Hodge Dual - Explanation

Explanation

Let W be a vector space, with an inner product . For every linear function there exists a unique vector v in W such that for all w in W. The map given by is an isomorphism. This holds for all vector spaces, and can be used to explain the Hodge dual.

Let V be an n-dimensional vector space with basis . For 0 ≤ kn, consider the exterior power spaces and . For each and, we have . There is, up to a scalar, only one n-vector, namely . In other words, must be a scalar multiple of for all and .

Consider a fixed . There exists a unique linear function such that for all . This is the scalar multiple mentioned in the previous paragraph. If denotes the inner product on (nk)-vectors, then there exists a unique (nk)-vector, say, such that for all . This (nk)-vector is the Hodge dual of λ, and is the image of the under the canonical isomorphism between and . Thus, .

Read more about this topic:  Hodge Dual

Famous quotes containing the word explanation:

    There is no explanation for evil. It must be looked upon as a necessary part of the order of the universe. To ignore it is childish, to bewail it senseless.
    W. Somerset Maugham (1874–1965)

    Natural selection, the blind, unconscious, automatic process which Darwin discovered, and which we now know is the explanation for the existence and apparently purposeful form of all life, has no purpose in mind. It has no mind and no mind’s eye. It does not plan for the future. It has no vision, no foresight, no sight at all. If it can be said to play the role of the watchmaker in nature, it is the blind watchmaker.
    Richard Dawkins (b. 1941)

    Young children constantly invent new explanations to account for complex processes. And since their inventions change from week to week, furnishing the “correct” explanation is not quite so important as conveying a willingness to discuss the subject. Become an “askable parent.”
    Ruth Formanek (20th century)