Properties
- The Hitchin functional is analogous for six-manifold to the Yang-Mills functional for the four-manifolds.
- The Hitchin functional is manifestly invariant under the action of the group of orientation-preserving diffeomorphisms.
- Theorem. Suppose that is a three-dimensional complex manifold and is the real part of a non-vanishing holomorphic 3-form, then is a critical point of the functional restricted to the cohomology class . Conversely, if is a critical point of the functional in a given comohology class and, then defines the structure of a complex manifold, such that is the real part of a non-vanishing holomorphic 3-form on .
- The proof of the theorem in Hitchin's articles Hitchin (2000) and Hitchin (2001) is relatively straightforward. The power of this concept is in the converse statement: if the exact form is known, we only have to look at its critical points to find the possible complex structures.
Read more about this topic: Hitchin Functional
Famous quotes containing the word properties:
“The reason why men enter into society, is the preservation of their property; and the end why they choose and authorize a legislative, is, that there may be laws made, and rules set, as guards and fences to the properties of all the members of the society: to limit the power, and moderate the dominion, of every part and member of the society.”
—John Locke (16321704)
“A drop of water has the properties of the sea, but cannot exhibit a storm. There is beauty of a concert, as well as of a flute; strength of a host, as well as of a hero.”
—Ralph Waldo Emerson (18031882)