History of The Big Bang Theory - 1990 Onwards

1990 Onwards

In 1990, measurements from the COBE satellite showed that the spectrum of the CMB matches a 2.725 K black-body to very high precision; deviations do not exceed 2 parts in 100,000. This showed that earlier claims of spectral deviations were incorrect, and essentially proved that the universe was hot and dense in the past, since no other known mechanism can produce a black-body to such high accuracy. Further observations from COBE in 1992 discovered the very small anisotropies of the CMB on large scales, approximately as predicted from Big Bang models with dark matter. From then on, models of non-standard cosmology without some form of Big Bang became very rare in the mainstream astronomy journals.

Huge advances in Big Bang cosmology were made in the late 1990s and the early 21st century, as a result of major advances in telescope technology in combination with large amounts of satellite data, such as the Hubble Space Telescope. In 1998, measurements of distant supernovae indicated that the expansion of the universe is accelerating, and this was supported by other observations including ground-based CMB observations and large galaxy redshift surveys. From 2003 to 2010, NASA's WMAP took very detailed pictures of the universe by means of the cosmic microwave background radiation. The images can be interpreted to indicate that the universe is 13.7 billion years old (within one percent error) and that the Lambda-CDM model and the inflationary theory are correct. No other cosmological theory can yet explain such a wide range of observed parameters, from the ratio of the elemental abundances in the early Universe to the structure of the cosmic microwave background, the observed higher abundance of active galactic nuclei in the early Universe and the observed masses of clusters of galaxies.

Much of the current work in cosmology includes understanding how galaxies form in the context of the Big Bang, understanding what happened in the earliest times after the Big Bang, and reconciling observations with the basic theory. Cosmologists continue to calculate many of the parameters of the Big Bang to a new level of precision, and carry out more detailed observations which are hoped to provide clues to the nature of dark energy and dark matter, and to test the theory of General Relativity on cosmic scales.

Read more about this topic:  History Of The Big Bang Theory