Hilbert Cube - Definition

Definition

The Hilbert cube is best defined as the topological product of the intervals for n = 1, 2, 3, 4, ... That is, it is a cuboid of countably infinite dimension, where the lengths of the edges in each orthogonal direction form the sequence .

The Hilbert cube is homeomorphic to the product of countably infinitely many copies of the unit interval . In other words, it is topologically indistinguishable from the unit cube of countably infinite dimension.

If a point in the Hilbert cube is specified by a sequence with, then a homeomorphism to the infinite dimensional unit cube is given by .

Read more about this topic:  Hilbert Cube

Famous quotes containing the word definition:

    One definition of man is “an intelligence served by organs.”
    Ralph Waldo Emerson (1803–1882)

    The man who knows governments most completely is he who troubles himself least about a definition which shall give their essence. Enjoying an intimate acquaintance with all their particularities in turn, he would naturally regard an abstract conception in which these were unified as a thing more misleading than enlightening.
    William James (1842–1910)

    Beauty, like all other qualities presented to human experience, is relative; and the definition of it becomes unmeaning and useless in proportion to its abstractness. To define beauty not in the most abstract, but in the most concrete terms possible, not to find a universal formula for it, but the formula which expresses most adequately this or that special manifestation of it, is the aim of the true student of aesthetics.
    Walter Pater (1839–1894)