Higher Residuosity Problem - Mathematical Background

Mathematical Background

If n is an integer, then the integers modulo n form a ring. If n=pq where p and q are primes, then the Chinese remainder theorem tells us that

The group of units of any ring form a group, and the group of units in is traditionally denoted (\mathbb{Z}/n\mathbb{Z})
^*.

From the isomorphism above, we have

as an isomorphism of groups. Since p and q were assumed to be prime, the groups and are cyclic of orders p-1 and q-1 respectively. If d is a divisor of p-1, then the set of dth powers in form a subgroup of index d. If gcd(d,q-1) = 1, then every element in is a dth power, so the set of dth powers in is also a subgroup of index d. In general, if gcd(d,q-1) = g, then there are (q-1)/(g) dth powers in, so the set of dth powers in has index dg. This is most commonly seen when d=2, and we are considering the subgroup of quadratic residues, it is well known that exactly one quarter of the elements in are quadratic residues (when n is the product of exactly two primes, as it is here).

The important point is that for any divisor d of p-1 (or q-1) the set of dth powers forms a subgroup of

Read more about this topic:  Higher Residuosity Problem

Famous quotes containing the words mathematical and/or background:

    The most distinct and beautiful statement of any truth must take at last the mathematical form.
    Henry David Thoreau (1817–1862)

    In the true sense one’s native land, with its background of tradition, early impressions, reminiscences and other things dear to one, is not enough to make sensitive human beings feel at home.
    Emma Goldman (1869–1940)