High-pressure Area - in Climatology

In Climatology

See also: Siberian high and Subtropical ridge

In terms of climatology, high pressure forms at the horse latitudes, or torrid zone, between the latitudes of 20 and 40 degrees from the equator, as a result of air that has been uplifted at the equator. As the hot air rises it cools, losing moisture; it is then transported poleward where it descends, creating the high-pressure area. This is part of the Hadley cell circulation and is known as the subtropical ridge or subtropical high, and is strongest in the summer. The subtropical ridge is a warm core high-pressure system, meaning it strengthens with height. Many of the world's deserts are caused by these climatological high-pressure systems.

Some climatological high-pressure areas acquire regionally based names. The land-based Siberian High often remains quasi-stationary for more than a month during the most frigid time of the year, making it unique in that regard. It is also a bit larger and more persistent than its counterpart in North America. Surface winds accelerating down valleys down the western Pacific ocean coastline, causing the winter monsoon. Arctic high-pressure systems such as the Siberian High are cold core, meaning that they weaken with height. The influence of the Azores High, also known as the Bermuda High, brings fair weather over much of the North Atlantic Ocean and mid to late summer heat waves in western Europe. Along its southerly periphery, the clockwise circulation often impels easterly waves, and tropical cyclones that develop from them, across the ocean towards landmasses in the western portion of ocean basins during the hurricane season. The highest barometric pressure ever recorded on Earth was 1,085.7 hectopascals (32.06 inHg) measured in Tonsontsengel, Mongolia on 19 December 2001.

Read more about this topic:  High-pressure Area