Higgs Boson - Technical Aspects and Mathematical Formulation

Technical Aspects and Mathematical Formulation

See also: Standard Model (mathematical formulation)

In the Standard Model, the Higgs field is a four-component scalar field that forms a complex doublet of the weak isospin SU(2) symmetry:


\phi=\frac{1}{\sqrt{2}}
\left(
\begin{array}{c}
\phi^1 + i\phi^2 \\ \phi^0+i\phi^3
\end{array}
\right)\;,

(1)

while the field has charge +1/2 under the weak hypercharge U(1) symmetry (in the convention where the electric charge, Q, the weak isospin, I3, and the weak hypercharge, Y, are related by Q = I3 + Y).

The Higgs part of the Lagrangian is

(2)

where and are the gauge bosons of the SU(2) and U(1) symmetries, and their respective coupling constants, (where are the Pauli matrices) a complete set generators of the SU(2) symmetry, and and, so that the ground state breaks the SU(2) symmetry (see figure). The ground state of the Higgs field (the bottom of the potential) is degenerate with different ground states related to each other by a SU(2) gauge transformation. It is always possible to pick a gauge such that in the ground state . The expectation value of in the ground state (the vacuum expectation value or vev) is then, where . The measured value of this parameter is ~246 GeV/c2. It has units of mass, and is the only free parameter of the Standard Model that is not a dimensionless number. Quadratic terms in and arise, which give masses to the W and Z bosons:

(3)

(4)

with their ratio determining the Weinberg angle, and leave a massless U(1) photon, .

The quarks and the leptons interact with the Higgs field through Yukawa interaction terms:

\begin{align}\mathcal{L}_{Y} =
&-\lambda_u^{ij}\frac{\phi^0-i\phi^3}{\sqrt{2}}\overline u_L^i u_R^j
+\lambda_u^{ij}\frac{\phi^1-i\phi^2}{\sqrt{2}}\overline d_L^i u_R^j\\
&-\lambda_d^{ij}\frac{\phi^0+i\phi^3}{\sqrt{2}}\overline d_L^i d_R^j
-\lambda_d^{ij}\frac{\phi^1+i\phi^2}{\sqrt{2}}\overline u_L^i d_R^j\\
&-\lambda_e^{ij}\frac{\phi^0+i\phi^3}{\sqrt{2}}\overline e_L^i e_R^j
-\lambda_e^{ij}\frac{\phi^1+i\phi^2}{\sqrt{2}}\overline \nu_L^i e_R^j
+ \textrm{h.c.},\end{align}

(5)

where are left-handed and right-handed quarks and leptons of the ith generation, are matrices of Yukawa couplings where h.c. denotes the hermitian conjugate terms. In the symmetry breaking ground state, only the terms containing remain, giving rise to mass terms for the fermions. Rotating the quark and lepton fields to the basis where the matrices of Yukawa couplings are diagonal, one gets

(6)

where the masses of the fermions are, and denote the eigenvalues of the Yukawa matrices.

Read more about this topic:  Higgs Boson

Famous quotes containing the words technical, aspects, mathematical and/or formulation:

    When you see something that is technically sweet, you go ahead and do it and you argue about what to do about it only after you have had your technical success. That is the way it was with the atomic bomb.
    J. Robert Oppenheimer (1904–1967)

    The power of a text is different when it is read from when it is copied out.... Only the copied text thus commands the soul of him who is occupied with it, whereas the mere reader never discovers the new aspects of his inner self that are opened by the text, that road cut through the interior jungle forever closing behind it: because the reader follows the movement of his mind in the free flight of day-dreaming, whereas the copier submits it to command.
    Walter Benjamin (1892–1940)

    As we speak of poetical beauty, so ought we to speak of mathematical beauty and medical beauty. But we do not do so; and that reason is that we know well what is the object of mathematics, and that it consists in proofs, and what is the object of medicine, and that it consists in healing. But we do not know in what grace consists, which is the object of poetry.
    Blaise Pascal (1623–1662)

    You do not mean by mystery what a Catholic does. You mean an interesting uncertainty: the uncertainty ceasing interest ceases also.... But a Catholic by mystery means an incomprehensible certainty: without certainty, without formulation there is no interest;... the clearer the formulation the greater the interest.
    Gerard Manley Hopkins (1844–1889)