Hierarchy Problem - Supersymmetric Solution

Supersymmetric Solution

Each particle that couples to the Higgs field has a Yukawa coupling λf. The coupling with the Higgs field for fermions gives an interaction term, being the Dirac Field and the Higgs Field. Also, the mass of a fermion is proportional to its Yukawa coupling, meaning that the Higgs boson will couple most to the most massive particle. This means that the most significant corrections to the Higgs mass will originate from the heaviest particles, most prominently the top quark. By applying the Feynman rules, one gets the quantum corrections to the Higgs mass squared from a fermion to be:

The is called the ultraviolet cutoff and is the scale up to which the Standard Model is valid. If we take this scale to be the Planck scale, then we have the quadratically diverging Lagrangian. However, suppose there existed two complex scalars (taken to be spin 0) such that:

λS= |λf|2 (the couplings to the Higgs are exactly the same).

Then by the Feynman rules, the correction (from both scalars) is:

(Note that the contribution here is positive. This is because of the spin-statistics theorem, which means that fermions will have a negative contribution and bosons a positive contribution. This fact is exploited) This gives a total contribution to the Higgs mass to be zero if we include both the fermionic and bosonic particles. Supersymmetry is an extension of this that creates 'superpartners' for all Standard Model particles.

This section adapted from Stephen P. Martin's "A Supersymmetry Primer" on arXiv.

Read more about this topic:  Hierarchy Problem

Famous quotes containing the word solution:

    I can’t quite define my aversion to asking questions of strangers. From snatches of family battles which I have heard drifting up from railway stations and street corners, I gather that there are a great many men who share my dislike for it, as well as an equal number of women who ... believe it to be the solution to most of this world’s problems.
    Robert Benchley (1889–1945)