Hierarchical Hidden Markov Model - Background

Background

It is sometimes useful to use HMMs in specific structures in order to facilitate learning and generalization. For example, even though a fully connected HMM could always be used if enough training data is available it is often useful to constrain the model by not allowing arbitrary state transitions. In the same way it can be beneficial to embed the HMM into a greater structure; which, theoretically, may not be able to solve any other problems than the basic HMM but can solve some problems more efficiently when it comes to the amount of training data required.

Read more about this topic:  Hierarchical Hidden Markov Model

Famous quotes containing the word background:

    Pilate with his question “What is truth?” is gladly trotted out these days as an advocate of Christ, so as to arouse the suspicion that everything known and knowable is an illusion and to erect the cross upon that gruesome background of the impossibility of knowledge.
    Friedrich Nietzsche (1844–1900)

    In the true sense one’s native land, with its background of tradition, early impressions, reminiscences and other things dear to one, is not enough to make sensitive human beings feel at home.
    Emma Goldman (1869–1940)

    ... every experience in life enriches one’s background and should teach valuable lessons.
    Mary Barnett Gilson (1877–?)