Possible Explanations
In spite of on-going research there is no convincing explanation to the origin of these lights. However, there are numerous working hypotheses.
- One explanation attributes the phenomenon to an incompletely understood combustion process in the air involving clouds of dust from the valley floor containing scandium. Some sightings though, have been identified as misperceptions of astronomical bodies, aircraft, car headlights, and mirages.
- One recent hypothesis suggests that the lights are formed by a cluster of macroscopic Coulomb crystals in a plasma produced by the ionization of air and dust by Alpha particles during radon decay in the dusty atmosphere. Several physical properties (oscillation, geometric structure, and light spectrum) observed in Hessdalen lights phenomenon can be explained through the dust plasma model. Radon decay produces alpha particles (responsible by helium emissions in HL spectrum) and radioactive elements such as polonium. In 2004, Teodorani showed an occurrence where a higher level of radioactivity on rocks was detected near the area where a large light ball was reported. In fact, when radon is released into air, its solid decay products readily attach to airborne dust. A new computer simulation shows that dust immersed in ionized gas (i.e., dusty plasmas) can organize itself into double helixes. The simulations suggested that under conditions commonly found in space, the dust particles first form a cylindrical structure that sometimes evolved into helical structures. Along some spirals, the radius of the helix was seen to change abruptly from one value to another and then back again, providing a mechanism for storing information in terms of the length and radius of a section of a spiral. Hessdalen Lights may take the helical structure. Surprisingly, dusty plasmas may also assume this structure.
- Another hypothesis explains HL as a product of piezoelectricity generated under specific rock strains (Takaki and Ikeya, 1998) because many crystal rocks include quartz grains which produce an intense charge density. In a recent paper, based in the dusty plasma theory of HL, it is suggested that piezoelectricity of quartz cannot explain a peculiar property assumed by the HL phenomenon – the presence of geometrical structures in its center. Paiva and Taft have shown a mechanism of light ball cluster formation in Hessdalenlights (HL) by the nonlinear interaction of ion-acoustic and dusty-acoustic waves with low frequency geoelectromagnetic waves in dusty plasmas. The theoretical model shows that the velocity of ejected light balls by HL cluster is of about 10,000 m s−1 in a good agreement with the observed velocity of some ejected light balls, which is estimated as 20,000 m s−1. Why the ejected ball is always green-colored? Ejection of small green light ball from HL is due to radiation pressure produced by the interaction between very low frequency electromagnetic waves (VLF) and atmospheric ions (present in the central white-colored ball) through ion-acoustic waves (IAW). Probably only O2+ ions (electronic transition (b4Σg- → a4Πu)), with green emission lines, is transported by IAW. Electronic bands of O2+ ion occur in auroral spectra. Electron-molecular-ion dissociative recombination coefficient rate α as functions of electron temperature Te and cross sections σ as a function of electron energy E have been have measured by Mehr and Biondi for N2+ and O2+ over the electron temperature interval 0.007-10 eV. The estimated temperature of HL is of about 5,000 K. In this temperature, the rate coefficient of dissociative recombination will be respectively α(Te)O2+ ~ 10-8 cm3 s-1, and α(Te)N2+ ~ 10-7 cm3 s-1. Thus, the nitrogen ions will be decomposed in N2+ + e- → N + N* more rapidly than oxygen ions in the HL plasma. Only ionic-species are transported by IAW. Therefore, only oxygen ions will be predominant ejected green light balls from a central white ball in HL, presenting negative band of O2+ with electronic transition b4Σg- → a4Πu after an IAW formation. Paiva and Taft presented a model for resolving the apparently contradictory spectrum observed in Hessdalen Lights (HL) phenomenon. Thus, its nearly flat spectrum on the top with steep sides is due to the effect of optical thickness on the bremsstrahlung spectrum. At low frequencies self-absorption modifies the spectrum to follow the Rayleigh-Jeans part of the blackbody curve. This spectrum is typical of dense ionized gas. Additionally, spectrum produced in the thermal bremsstrahlung process is flat up to a cutoff frequency, ν cut, and falls off exponentially at higher frequencies. This sequence of events forms the typical spectrum of HL phenomenon when the atmosphere is clear, with no fog. According to the model, spatial color distribution of luminous balls commonly observed in HL phenomenon are produced by electrons accelerated by electric fields during rapid fracture of piezoelectric rocks under the ground.
- Author Brian Dunning postulates that at least some of the Hessdalen sightings could be landing lights of aircraft en route from Oslo, Norway to Trondheim Airport. Charter passenger service between Oslo and Trondheim began with a few flights in 1976. By 2002, the Oslo to Trondheim route was the busiest in Norway. Trondheim is about 40 nautical miles north of Hessdalen, and at that range the use of aircraft landing lights is discretionary, meaning that some planes will have them on and some will not. "I have found no mention by any of the project's lead scientists that any serious effort was made to match the lights to aircraft flyovers in an attempt to falsify this particular hypothesis." Similar light phenomena seen near Marfa, Texas and in eastern Australia have been confirmed to be Fata Morgana (mirage), increasing the likelihood that the Hessdalen lights have the same explanation.
Read more about this topic: Hessdalen Light
Famous quotes containing the word explanations:
“Young children constantly invent new explanations to account for complex processes. And since their inventions change from week to week, furnishing the correct explanation is not quite so important as conveying a willingness to discuss the subject. Become an askable parent.”
—Ruth Formanek (20th century)
“We operate exclusively with things that do not exist, with lines, surfaces, bodies, atoms, divisible time spans, divisible spaceshow could explanations be possible at all when we initially turn everything into images, into our images!”
—Friedrich Nietzsche (18441900)