Heron's Formula - Generalizations

Generalizations

Heron's formula is a special case of Brahmagupta's formula for the area of a cyclic quadrilateral. Heron's formula and Brahmagupta's formula are both special cases of Bretschneider's formula for the area of a quadrilateral. Heron's formula can be obtained from Brahmagupta's formula or Bretschneider's formula by setting one of the sides of the quadrilateral to zero.

Heron's formula is also a special case of the formula of the area of the trapezoid based only on its sides. Heron's formula is obtained by setting the smaller parallel side to zero.

Expressing Heron's formula with a Cayley–Menger determinant in terms of the squares of the distances between the three given vertices,

 T = \frac{1}{4} \sqrt{- \begin{vmatrix} 0 & a^2 & b^2 & 1 \\
a^2 & 0 & c^2 & 1 \\
b^2 & c^2 & 0 & 1 \\ 1 & 1 & 1 & 0
\end{vmatrix} }

illustrates its similarity to Tartaglia's formula for the volume of a three-simplex.

Another generalization of Heron's formula to pentagons and hexagons inscribed in a circle was discovered by David P. Robbins.

Read more about this topic:  Heron's Formula