Hermetic Detector

In particle physics, a hermetic detector (also called a 4π detector) is a particle detector designed to observe all possible decay products of an interaction between subatomic particles in a collider by covering as large an area around the interaction point as possible and incorporating multiple types of sub-detectors. They are typically roughly cyllindrical, with different types of detectors wrapped around each other; each detector type specializes in particular particles so that almost any particle will be detected and identified. Such detectors are called "hermetic" because they are constructed so as the motion of particles are ceased at the boundaries of the chamber without any moving beyond due to the seals; the name "4π detector" comes from the fact that such detectors are designed to cover nearly all of the 4π steradians of solid angle around the interaction point.

The first such detector was the Mark I at the Stanford Linear Accelerator Center, and the basic design has been used for all subsequent collider detectors. Prior to the building of the Mark I, it was thought that most particle decay products would have relatively low transverse momentum (i.e. momentum perpendicular to the beamline), so that detectors could cover this area only. However, it was learned at the Mark I and subsequent experiments that most fundamental particle interactions at colliders involve very large exchanges of energy and therefore large transverse momenta are not uncommon; for this reason, large angular coverage is critical for modern particle physics.

Read more about Hermetic Detector:  Components, Particle Identification