Hereditarily Countable Set

In set theory, a set is called hereditarily countable if it is a countable set of hereditarily countable sets. This inductive definition is in fact well-founded and can be expressed in the language of first-order set theory. A set is hereditarily countable if and only if it is countable, and every element of its transitive closure is countable. If the axiom of countable choice holds, then a set is hereditarily countable if and only if its transitive closure is countable.

The class of all hereditarily countable sets can be proven to be a set from the axioms of Zermelo–Fraenkel set theory (ZF) without any form of the axiom of choice, and this set is designated . The hereditarily countable sets form a model of Kripke–Platek set theory with the axiom of infinity (KPI), if the axiom of countable choice is assumed in the metatheory.

If, then .

More generally, a set is hereditarily of cardinality less than κ if and only it is of cardinality less than κ, and all its elements are hereditarily of cardinality less than κ; the class of all such sets can also be proven to be a set from the axioms of ZF, and is designated . If the axiom of choice holds and the cardinal κ is regular, then a set is hereditarily of cardinality less than κ if and only if its transitive closure is of cardinality less than κ.

Famous quotes containing the word set:

    Hence anyone who seeks for the true cause of miracles, and strives to understand natural phenomena as an intelligent being, and not to gaze at them as a fool, is set down and denounced as a impious heretic by those, whom the masses adore as the interpreters of nature and the gods.
    Baruch (Benedict)