Bogoliubov Inequality
Computing the free energy is an intractable problem for all but the simplest models in statistical physics. A powerful approximation method is mean field theory, which is a variational method based on the Bogoliubov inequality. This inequality can be formulated as follows.
Suppose we replace the real Hamiltonian of the model by a trial Hamiltonian, which has different interactions and may depend on extra parameters that are not present in the original model. If we choose this trial Hamiltonian such that
where both averages are taken with respect to the canonical distribution defined by the trial Hamiltonian, then
where is the free energy of the original Hamiltonian and is the free energy of the trial Hamiltonian. By including a large number of parameters in the trial Hamiltonian and minimizing the free energy we can expect to get a close approximation to the exact free energy.
The Bogoliubov inequality is often formulated in a sightly different but equivalent way. If we write the Hamiltonian as:
where is exactly solvable, then we can apply the above inequality by defining
Here we have defined to be the average of X over the canonical ensemble defined by . Since defined this way differs from by a constant, we have in general
Therefore
And thus the inequality
holds. The free energy is the free energy of the model defined by plus . This means that
and thus:
Read more about this topic: Helmholtz Free Energy
Famous quotes containing the word inequality:
“All the aspects of this desert are beautiful, whether you behold it in fair weather or foul, or when the sun is just breaking out after a storm, and shining on its moist surface in the distance, it is so white, and pure, and level, and each slight inequality and track is so distinctly revealed; and when your eyes slide off this, they fall on the ocean.”
—Henry David Thoreau (18171862)