Measure Theory
To define the Hellinger distance in terms of measure theory, let P and Q denote two probability measures that are absolutely continuous with respect to a third probability measure λ. The square of the Hellinger distance between P and Q is defined as the quantity
Here, dP / dλ and dQ / dλ are the Radon–Nikodym derivatives of P and Q respectively. This definition does not depend on λ, so the Hellinger distance between P and Q does not change if λ is replaced with a different probability measure with respect to which both P and Q are absolutely continuous. For compactness, the above formula is often written as
Read more about this topic: Hellinger Distance, Definition
Famous quotes containing the words measure and/or theory:
“I have thought a sufficient measure of civilization is the influence of good women.”
—Ralph Waldo Emerson (18031882)
“The struggle for existence holds as much in the intellectual as in the physical world. A theory is a species of thinking, and its right to exist is coextensive with its power of resisting extinction by its rivals.”
—Thomas Henry Huxley (182595)