Helium-3 - Cryogenics

Cryogenics

A helium-3 refrigerator uses helium-3 to achieve temperatures of 0.2 to 0.3 kelvin. A dilution refrigerator uses a mixture of helium-3 and helium-4 to reach cryogenic temperatures as low as a few thousandths of a kelvin.

An important property of helium-3, which distinguishes it from the more common helium-4, is that its nucleus is a fermion since it contains an odd number of spin 1/2 particles. Helium-4 nuclei are bosons, containing an even number of spin 1/2 particles. This is a direct result of the addition rules for quantized angular momentum. At low temperatures (about 2.17 K), helium-4 undergoes a phase transition: A fraction of it enters a superfluid phase that can be roughly understood as a type of Bose-Einstein condensate. Such a mechanism is not available for helium-3 atoms, which are fermions. However, it was widely speculated that helium-3 could also become a superfluid at much lower temperatures, if the atoms formed into pairs analogous to Cooper pairs in the BCS theory of superconductivity. Each Cooper pair, having integer spin, can be thought of as a boson. During the 1970s, David Lee, Douglas Osheroff and Robert Coleman Richardson discovered two phase transitions along the melting curve, which were soon realized to be the two superfluid phases of helium-3. The transition to a superfluid occurs at 2.491 millikelvins (i.e., 0.002491 K) on the melting curve. They were awarded the 1996 Nobel Prize in Physics for their discovery. Tony Leggett won the 2003 Nobel Prize in Physics for his work on refining understanding of the superfluid phase of helium-3.

In zero magnetic field, there are two distinct superfluid phases of 3He, the A-phase and the B-phase. The B-phase is the low-temperature, low-pressure phase which has an isotropic energy gap. The A-phase is the higher temperature, higher pressure phase that is further stabilized by a magnetic field and has two point nodes in its gap. The presence of two phases is a clear indication that 3He is an unconventional superfluid (superconductor), since the presence of two phases requires an additional symmetry, other than gauge symmetry, to be broken. In fact, it is a p-wave superfluid, with spin one, S=1, and angular momentum one, L=1. The ground state corresponds to total angular momentum zero, J=S+L=0 (vector addition). Excited states are possible with non-zero total angular momentum, J>0, which are excited pair collective modes. Because of the extreme purity of superfluid 3He (since all materials except 4He have solidified and sunk to the bottom of the liquid 3He and any 4He has phase separated entirely, this is the most pure condensed matter state), these collective modes have been studied with much greater precision than in any other unconventional pairing system.

Read more about this topic:  Helium-3