Definition
Let X and Y be two non-empty subsets of a metric space (M, d). We define their Hausdorff distance d H(X, Y) by
where sup represents the supremum and inf the infimum.
Equivalently
- ,
where
- ,
that is, the set of all points within of the set (sometimes called the -fattening of or a generalized ball of radius around ).
Read more about this topic: Hausdorff Distance
Famous quotes containing the word definition:
“... we all know the wags definition of a philanthropist: a man whose charity increases directly as the square of the distance.”
—George Eliot [Mary Ann (or Marian)
“Its a rare parent who can see his or her child clearly and objectively. At a school board meeting I attended . . . the only definition of a gifted child on which everyone in the audience could agree was mine.”
—Jane Adams (20th century)
“Mothers often are too easily intimidated by their childrens negative reactions...When the child cries or is unhappy, the mother reads this as meaning that she is a failure. This is why it is so important for a mother to know...that the process of growing up involves by definition things that her child is not going to like. Her job is not to create a bed of roses, but to help him learn how to pick his way through the thorns.”
—Elaine Heffner (20th century)