Harmonic Superspace - Relation To Quaternions

Relation To Quaternions

The group can be identified with the Lie group of quaternions with unit norm under multiplication., and hence the quaternions act upon the tangent space of extended superspace. The bosonic spacetime dimensions transform trivially under while the fermionic dimensions transform according to the fundamental representation. The left multiplication by quaternions is linear. Now consider the subspace of unit quaternions with no real component, which is isomorphic to S2. Each element of this subspace can act as the imaginary number i in a complex subalgebra of the quaternions. So, for each element of S2, we can use the corresponding imaginary unit to define a complex-real structure over the extended superspace with 8 real SUSY generators. The totality of all CR structures for each point in S2 is harmonic superspace.

Read more about this topic:  Harmonic Superspace

Famous quotes containing the words relation to and/or relation:

    The proper study of mankind is man in his relation to his deity.
    —D.H. (David Herbert)

    The foregoing generations beheld God and nature face to face; we, through their eyes. Why should not we also enjoy an original relation to the universe? Why should not we have a poetry and philosophy of insight and not of tradition, and a religion by revelation to us, and not the history of theirs?
    Ralph Waldo Emerson (1803–1882)