Relation To Quaternions
The group can be identified with the Lie group of quaternions with unit norm under multiplication., and hence the quaternions act upon the tangent space of extended superspace. The bosonic spacetime dimensions transform trivially under while the fermionic dimensions transform according to the fundamental representation. The left multiplication by quaternions is linear. Now consider the subspace of unit quaternions with no real component, which is isomorphic to S2. Each element of this subspace can act as the imaginary number i in a complex subalgebra of the quaternions. So, for each element of S2, we can use the corresponding imaginary unit to define a complex-real structure over the extended superspace with 8 real SUSY generators. The totality of all CR structures for each point in S2 is harmonic superspace.
Read more about this topic: Harmonic Superspace
Famous quotes containing the words relation to and/or relation:
“A theory of the middle class: that it is not to be determined by its financial situation but rather by its relation to government. That is, one could shade down from an actual ruling or governing class to a class hopelessly out of relation to government, thinking of govt as beyond its control, of itself as wholly controlled by govt. Somewhere in between and in gradations is the group that has the sense that govt exists for it, and shapes its consciousness accordingly.”
—Lionel Trilling (19051975)
“There is the falsely mystical view of art that assumes a kind of supernatural inspiration, a possession by universal forces unrelated to questions of power and privilege or the artists relation to bread and blood. In this view, the channel of art can only become clogged and misdirected by the artists concern with merely temporary and local disturbances. The song is higher than the struggle.”
—Adrienne Rich (b. 1929)