Harmonic Number - Generating Functions

Generating Functions

A generating function for the harmonic numbers is

\sum_{n=1}^\infty z^n H_n =
\frac {-\ln(1-z)}{1-z},

where is the natural logarithm. An exponential generating function is

\sum_{n=1}^\infty \frac {z^n}{n!} H_n = -e^z \sum_{k=1}^\infty \frac{1}{k} \frac {(-z)^k}{k!} =
e^z \mbox {Ein}(z)

where is the entire exponential integral. Note that

\mbox {Ein}(z) = \mbox{E}_1(z) + \gamma + \ln z =
\Gamma (0,z) + \gamma + \ln z\,

where is the incomplete gamma function.

Read more about this topic:  Harmonic Number

Famous quotes containing the word functions:

    The mind is a finer body, and resumes its functions of feeding, digesting, absorbing, excluding, and generating, in a new and ethereal element. Here, in the brain, is all the process of alimentation repeated, in the acquiring, comparing, digesting, and assimilating of experience. Here again is the mystery of generation repeated.
    Ralph Waldo Emerson (1803–1882)