Harmonic Number - Generating Functions

Generating Functions

A generating function for the harmonic numbers is

\sum_{n=1}^\infty z^n H_n =
\frac {-\ln(1-z)}{1-z},

where is the natural logarithm. An exponential generating function is

\sum_{n=1}^\infty \frac {z^n}{n!} H_n = -e^z \sum_{k=1}^\infty \frac{1}{k} \frac {(-z)^k}{k!} =
e^z \mbox {Ein}(z)

where is the entire exponential integral. Note that

\mbox {Ein}(z) = \mbox{E}_1(z) + \gamma + \ln z =
\Gamma (0,z) + \gamma + \ln z\,

where is the incomplete gamma function.

Read more about this topic:  Harmonic Number

Famous quotes containing the word functions:

    Mark the babe
    Not long accustomed to this breathing world;
    One that hath barely learned to shape a smile,
    Though yet irrational of soul, to grasp
    With tiny finger—to let fall a tear;
    And, as the heavy cloud of sleep dissolves,
    To stretch his limbs, bemocking, as might seem,
    The outward functions of intelligent man.
    William Wordsworth (1770–1850)