Examples
- If is the unit disk, then harmonic measure of with pole at the origin is length measure on the unit circle normalized to be a probability, i.e. for all where denotes the length of .
- If is the unit disk and, then for all where denotes length measure on the unit circle. The Radon-Nikodym derivative is called the Poisson kernel.
- More generally, if and is the n-dimensional unit ball, then harmonic measure with pole at is for all where denotes surface measure (-dimensional Hausdorff measure) on the unit sphere and .
- If is a simply connected planar domain bounded by a Jordan curve and XD, then for all where is the unique Riemann map which sends the origin to X, i.e. . See Carathéodory's theorem.
- If is the domain bounded by the Koch snowflake, then there exists a subset of the Koch snowflake such that has zero length and full harmonic measure .
Read more about this topic: Harmonic Measure
Famous quotes containing the word examples:
“Histories are more full of examples of the fidelity of dogs than of friends.”
—Alexander Pope (16881744)
“No rules exist, and examples are simply life-savers answering the appeals of rules making vain attempts to exist.”
—André Breton (18961966)
“It is hardly to be believed how spiritual reflections when mixed with a little physics can hold peoples attention and give them a livelier idea of God than do the often ill-applied examples of his wrath.”
—G.C. (Georg Christoph)