Statement
A distribution on a group G or its Lie algebra is called invariant if it is invariant under conjugation by G.
A distribution on a group G or its Lie algebra is called an eigendistribution if it is an eigenvector of the center of the universal enveloping algebra of G (identified with the left and right invariant differential operators of G.
Harish-Chandra's regularity theorem states that any invariant eigendistribution on a semisimple group or Lie algebra is a locally integrable function. The condition that it is an eigendistribution can be relaxed slightly to the condition that its image under the center of the universal enveloping algebra is finite-dimensional. The regularity theorem also implies that on each Cartan subalgebra the distribution can be written as a finite sum of exponentials divided by a function Δ that closely resembles the denominator of the Weyl character formula.
Read more about this topic: Harish-Chandra's Regularity Theorem
Famous quotes containing the word statement:
“No statement about God is simply, literally true. God is far more than can be measured, described, defined in ordinary language, or pinned down to any particular happening.”
—David Jenkins (b. 1925)
“I think, therefore I am is the statement of an intellectual who underrates toothaches.”
—Milan Kundera (b. 1929)
“The honor my country shall never be stained by an apology from me for the statement of truth and the performance of duty; nor can I give any explanation of my official acts except such as is due to integrity and justice and consistent with the principles on which our institutions have been framed.”
—Andrew Jackson (17671845)