Haplogroup - Haplogroup Formation

Haplogroup Formation

Mitochondria are small organelles that lie in the cytoplasm of eukaryotic cells, such as those of humans. Their primary purpose is to provide energy to the cell. Mitochondria are thought to be reduced descendants of symbiotic bacteria that were once free living. One indication that mitochondria were once free living is that each contains a circular DNA, called mitochondrial DNA (mtDNA), whose structure is more similar to bacteria than eukaryotic organisms (see endosymbiotic theory). The overwhelming majority of a human's DNA is contained in the chromosomes in the nucleus of the cell, but mtDNA is an exception.

An individual inherits his or her cytoplasm and the organelles contained by that cytoplasm exclusively from the maternal ovum (egg cell); sperm carry only the chromosomal DNA- perhaps due to the necessity of maintaining motility. When a mutation arises in an mtDNA molecule, the mutation is therefore passed in a direct female line of descent. Mutations are copying mistakes in the DNA sequence. Single mistakes are called single nucleotide polymorphisms (SNPs).

Human Y chromosomes are male-specific sex chromosomes; nearly all humans that possess a Y chromosome will be morphologically male. Y chromosomes are therefore passed from father to son; although Y chromosomes are situated in the cell nucleus, they only recombine with the X chromosome at the ends of the Y chromosome; the vast majority of the Y chromosome (95%) does not recombine. When mutations (SNPs) arise in the Y chromosome, they are passed on directly from father to son in a direct male line of descent. The Y chromosome and mtDNA therefore share specific properties.

Other chromosomes, autosomes and X chromosomes in women, share their genetic material (called crossing over leading to recombination) during meiosis (a special type of cell division that occurs for the purposes of sexual reproduction). Effectively this means that the genetic material from these chromosomes gets mixed up in every generation, and so any new mutations are passed down randomly from parents to offspring.

The special feature that both Y chromosomes and mtDNA display is that mutations can accrue along a certain segment of both molecules and these mutations remain fixed in place on the DNA. Furthermore the historical sequence of these mutations can also be inferred. For example, if a set of ten Y chromosomes (derived from ten different men) contains a mutation, A, but only five of these chromosomes contain a second mutation, B, it must be the case that mutation B occurred after mutation A.

Furthermore all ten men who carry the chromosome with mutation A are the direct male line descendants of the same man who was the first person to carry this mutation. The first man to carry mutation B was also a direct male line descendant of this man, but is also the direct male line ancestor of all men carrying mutation B. Series of mutations such as this form molecular lineages. Furthermore each mutation defines a set of specific Y chromosomes called a haplogroup.

All men carrying mutation A form a single haplogroup, all men carrying mutation B are part of this haplogroup, but mutation B also defines a more recent haplogroup (which is a subgroup or subclase) of its own which men carrying only mutation A do not belong to. Both mtDNA and Y chromosomes are grouped into lineages and haplogroups; these are often presented as tree like diagrams.

Read more about this topic:  Haplogroup

Famous quotes containing the word formation:

    I want you to consider this distinction as you go forward in life. Being male is not enough; being a man is a right to be earned and an honor to be cherished. I cannot tell you how to earn that right or deserve that honor. . . but I can tell you that the formation of your manhood must be a conscious act governed by the highest vision of the man you want to be.
    Kent Nerburn (20th century)