Mathematical Formulation
Hamilton's principle states that the true evolution q(t) of a system described by N generalized coordinates q = (q1, q2, ..., qN) between two specified states q1 = q(t1) and q2 = q(t2) at two specified times t1 and t2 is a stationary point (a point where the variation is zero), of the action functional
where is the Lagrangian function for the system. In other words, any first-order perturbation of the true evolution results in (at most) second-order changes in . The action is a functional, i.e., something that takes as its input a function and returns a single number, a scalar. In terms of functional analysis, Hamilton's principle states that the true evolution of a physical system is a solution of the functional equation
-
Hamilton's principle
Read more about this topic: Hamilton's Principle
Famous quotes containing the words mathematical and/or formulation:
“The circumstances of human society are too complicated to be submitted to the rigour of mathematical calculation.”
—Marquis De Custine (17901857)
“You do not mean by mystery what a Catholic does. You mean an interesting uncertainty: the uncertainty ceasing interest ceases also.... But a Catholic by mystery means an incomprehensible certainty: without certainty, without formulation there is no interest;... the clearer the formulation the greater the interest.”
—Gerard Manley Hopkins (18441889)