Hamilton's Principle - Mathematical Formulation

Mathematical Formulation

Hamilton's principle states that the true evolution q(t) of a system described by N generalized coordinates q = (q1, q2, ..., qN) between two specified states q1 = q(t1) and q2 = q(t2) at two specified times t1 and t2 is a stationary point (a point where the variation is zero), of the action functional


\mathcal{S} \ \stackrel{\mathrm{def}}{=}\
\int_{t_1}^{t_2} L(\mathbf{q}(t),\dot{\mathbf{q}}(t),t)\, dt

where is the Lagrangian function for the system. In other words, any first-order perturbation of the true evolution results in (at most) second-order changes in . The action is a functional, i.e., something that takes as its input a function and returns a single number, a scalar. In terms of functional analysis, Hamilton's principle states that the true evolution of a physical system is a solution of the functional equation

Hamilton's principle


\frac{\delta \mathcal{S}}{\delta \mathbf{q}(t)}=0

Read more about this topic:  Hamilton's Principle

Famous quotes containing the words mathematical and/or formulation:

    As we speak of poetical beauty, so ought we to speak of mathematical beauty and medical beauty. But we do not do so; and that reason is that we know well what is the object of mathematics, and that it consists in proofs, and what is the object of medicine, and that it consists in healing. But we do not know in what grace consists, which is the object of poetry.
    Blaise Pascal (1623–1662)

    In necessary things, unity; in disputed things, liberty; in all things, charity.
    —Variously Ascribed.

    The formulation was used as a motto by the English Nonconformist clergyman Richard Baxter (1615-1691)