Half Range Fourier Series

A half range Fourier series is a Fourier series defined on an interval instead of the more common, with the implication that the analyzed function should be extended to as either an even (f(-x)=f(x)) or odd function (f(-x)=-f(x)). This allows the expansion of the function in a series solely of sines (odd) or cosines (even). The choice between odd and even is typically motivated by boundary conditions associated with a differential equation satisfied by .

Example

Calculate the half range Fourier sine series for the function where .

Since we are calculating a sine series, Now,  b_n= \frac{2}{\pi} \int_0^\pi \cos(x)\sin(nx)\,\mathrm{d}x = \frac{2n((-1)^n+1)}{\pi(n^2-1)}\quad \forall n\ge 2

When n is odd, When n is even, thus

With the special case, hence the required Fourier sine series is

Famous quotes containing the words range and/or series:

    but we wish the river had another shore,
    some further range of delectable mountains,
    Robert Lowell (1917–1977)

    If the technology cannot shoulder the entire burden of strategic change, it nevertheless can set into motion a series of dynamics that present an important challenge to imperative control and the industrial division of labor. The more blurred the distinction between what workers know and what managers know, the more fragile and pointless any traditional relationships of domination and subordination between them will become.
    Shoshana Zuboff (b. 1951)