Hahn Decomposition Theorem

In mathematics, the Hahn decomposition theorem, named after the Austrian mathematician Hans Hahn, states that given a measurable space (X,Σ) and a signed measure μ defined on the σ-algebra Σ, there exist two measurable sets P and N in Σ such that:

  1. PN = X and PN = ∅.
  2. For each E in Σ such that EP one has μ(E) ≥ 0; that is, P is a positive set for μ.
  3. For each E in Σ such that EN one has μ(E) ≤ 0; that is, N is a negative set for μ.

Moreover, this decomposition is essentially unique, in the sense that for any other pair (P', N') of measurable sets fulfilling the above three conditions, the symmetric differences P Δ P' and N Δ N' are μ-null sets in the strong sense that every measurable subset of them has zero measure. The pair (P,N) is called a Hahn decomposition of the signed measure μ.

Read more about Hahn Decomposition Theorem:  Jordan Measure Decomposition, Proof of The Hahn Decomposition Theorem

Famous quotes containing the word theorem:

    To insure the adoration of a theorem for any length of time, faith is not enough, a police force is needed as well.
    Albert Camus (1913–1960)