Hafnium - Production

Production

The heavy mineral sands ore deposits of the titanium ores ilmenite and rutile yield most of the mined zirconium, and therefore also most of the hafnium.

Zirconium is a good nuclear fuel-rod cladding metal, with the desirable properties of a very low neutron capture cross-section and good chemical stability at high temperatures. However, because of hafnium's neutron-absorbing properties, hafnium impurities in zirconium would cause it to be far less useful for nuclear-reactor applications. Thus, a nearly complete separation of zirconium and hafnium is necessary for their use in nuclear power. The production of hafnium-free zirconium is the main source for hafnium.

The chemical properties of hafnium and zirconium are nearly identical, which makes the two difficult to separate. The methods first used — fractional crystallization of ammonium fluoride salts or the fractionated distillation of the chloride — have not proven suitable for an industrial-scale production. After zirconium was chosen as material for nuclear reactor programs in the 1940s, a separation method had to be developed. Liquid-liquid extraction processes with a wide variety of solvents were developed and are still used for the production of hafnium. About half of all hafnium metal manufactured is produced as a by-product of zirconium refinement. The end product of the separation is hafnium(IV) chloride. The purified hafnium(IV) chloride is converted to the metal by reduction with magnesium or sodium, as in the Kroll process.

HfCl4 + 2 Mg (1100 °C) → 2 MgCl2 + Hf

Further purification is effected by a chemical transport reaction developed by Arkel and de Boer: In a closed vessel, hafnium reacts with iodine at temperatures of 500 °C, forming hafnium(IV) iodide; at a tungsten filament of 1700 °C the reverse reaction happens, and the iodine and hafnium are set free. The hafnium forms a solid coating at the tungsten filament, and the iodine can react with additional hafnium, resulting in a steady turn over.

Hf + 2 I2 (500 °C) → HfI4
HfI4 (1700 °C) → Hf + 2 I2

Read more about this topic:  Hafnium

Famous quotes containing the word production:

    It is part of the educator’s responsibility to see equally to two things: First, that the problem grows out of the conditions of the experience being had in the present, and that it is within the range of the capacity of students; and, secondly, that it is such that it arouses in the learner an active quest for information and for production of new ideas. The new facts and new ideas thus obtained become the ground for further experiences in which new problems are presented.
    John Dewey (1859–1952)

    The problem of culture is seldom grasped correctly. The goal of a culture is not the greatest possible happiness of a people, nor is it the unhindered development of all their talents; instead, culture shows itself in the correct proportion of these developments. Its aim points beyond earthly happiness: the production of great works is the aim of culture.
    Friedrich Nietzsche (1844–1900)

    Just as modern mass production requires the standardization of commodities, so the social process requires standardization of man, and this standardization is called equality.
    Erich Fromm (1900–1980)