Special Cases
The case where k = 2 is trivial: a graph requires more than one color if and only if it has an edge, and that edge is itself a K2 minor. The case k = 3 is also easy: the graphs requiring three colors are the non-bipartite graphs, and every non-bipartite graph has an odd cycle, which can be contracted to a 3-cycle, that is, a K3 minor.
In the same paper in which he introduced the conjecture, Hadwiger proved its truth for k ≤ 4. The graphs with no K4 minor are the series-parallel graphs and their subgraphs. Each graph of this type has a vertex with at most two incident edges; one can 3-color any such graph by removing one such vertex, coloring the remaining graph recursively, and then adding back and coloring the removed vertex. Because the removed vertex has at most two edges, one of the three colors will always be available to color it when the vertex is added back.
The truth of the conjecture for k = 5 implies the four color theorem: for, if the conjecture is true, every graph requiring five or more colors would have a K5 minor and would (by Wagner's theorem) be nonplanar. Klaus Wagner proved in 1937 that the case k = 5 is actually equivalent to the four color theorem and therefore we now know it to be true. As Wagner showed, every graph that has no K5 minor can be decomposed via clique-sums into pieces that are either planar or an 8-vertex Möbius ladder, and each of these pieces can be 4-colored independently of each other, so the 4-colorability of a K5-minor-free graph follows from the 4-colorability of each of the planar pieces.
Robertson, Seymour & Thomas (1993) proved the conjecture for k = 6, also using the four color theorem; their paper with this proof won the 1994 Fulkerson Prize. It follows from their proof that linklessly embeddable graphs, a three-dimensional analogue of planar graphs, have chromatic number at most five. Due to this result, the conjecture is known to be true for k ≤ 6, but it remains unsolved for all k > 6.
For k = 7, some partial results are known: every 7-chromatic graph must contain either a K7 minor or both a K4,4 minor and a K3,5 minor.
Read more about this topic: Hadwiger Conjecture (graph Theory)
Famous quotes containing the words special and/or cases:
“When a mother quarrels with a daughter, she has a double dose of unhappinesshers from the conflict, and empathy with her daughters from the conflict with her. Throughout her life a mother retains this special need to maintain a good relationship with her daughter.”
—Terri Apter (20th century)
“In most cases a favorite writer is more with us in his book than he ever could have been in the flesh; since, being a writer, he is one who has studied and perfected this particular mode of personal incarnation, very likely to the detriment of any other. I should like as a matter of curiosity to see and hear for a moment the men whose works I admire; but I should hardly expect to find further intercourse particularly profitable.”
—Charles Horton Cooley (18641929)