Polynomial and Exponential Growth
If
for some we say that G has a polynomial growth rate. The infimum of such k's is called the order of polynomial growth. According to Gromov's theorem, a group of polynomial growth is virtually nilpotent, i.e. it has a nilpotent subgroup of finite index. In particular, the order of polynomial growth has to be a natural number and in fact .
If for some we say that G has an exponential growth rate. Every finitely generated G has at most exponential growth, i.e. for some we have .
If grows more slowly than any exponential function, G has a subexponential growth rate. Any such group is amenable.
Read more about this topic: Growth Rate (group Theory)
Famous quotes containing the word growth:
“But parents can be understanding and accept the more difficult stages as necessary times of growth for the child. Parents can appreciate the fact that these phases are not easy for the child to live through either; rapid growth times are hard on a child. Perhaps its a small comfort to know that the harder-to-live-with stages do alternate with the calmer times,so parents can count on getting periodic breaks.”
—Saf Lerman (20th century)