Group Action - Types of Actions

Types of Actions

The action of G on X is called

  • Transitive if X is non-empty and if for any x, y in X there exists a g in G such that g.x = y.
  • Faithful (or effective) if for any two distinct g, h in G there exists an x in X such that g.xh.x; or equivalently, if for any ge in G there exists an x in X such that g.xx. Intuitively, in a faithful group action, different elements of G induce different permutations of X.
  • Free (or semiregular) if, given g, h in G, the existence of an x in X with g.x = h.x implies g = h. Equivalently: if g is a group element and there exists an x in X with g.x = x (that is, if g has at least one fixed point), then g is the identity.
  • Regular (or simply transitive or sharply transitive) if it is both transitive and free; this is equivalent to saying that for any two x, y in X there exists precisely one g in G such that g.x = y. In this case, X is known as a principal homogeneous space for G or as a G-torsor.
  • n-transitive if X has at least n elements and for any pairwise distinct x1, ..., xn and pairwise distinct y1, ..., yn there is a g in G such that g·xk = yk for 1 ≤ kn. A 2-transitive action is also called doubly transitive, a 3-transitive action is also called triply transitive, and so on. Such actions define 2-transitive groups, 3-transitive groups, and multiply transitive groups.
    • Sharply n-transitive if there is exactly one such g. See also sharply triply transitive groups.
  • Primitive if it is transitive and preserves no non-trivial partition of X. See primitive permutation group for details.
  • Locally free if G is a topological group, and there is a neighbourhood U of e in G such that the restriction of the action to U is free; that is, if g.x = x for some x and some g in U then g = e.
  • Irreducible if X is a non-zero module over a ring R, the action of G is R-linear, and there is no nonzero proper invariant submodule.

Every free action on a non-empty set is faithful. A group G acts faithfully on X if and only if the corresponding homomorphism G → Sym(X) has a trivial kernel. Thus, for a faithful action, G is isomorphic to a permutation group on X; specifically, G is isomorphic to its image in Sym(X).

The action of any group G on itself by left multiplication is regular, and thus faithful as well. Every group can, therefore, be embedded in the symmetric group on its own elements, Sym(G) — a result known as Cayley's theorem.

If G does not act faithfully on X, one can easily modify the group to obtain a faithful action. If we define N = {g in G : g.x = x for all x in X}, then N is a normal subgroup of G; indeed, it is the kernel of the homomorphism G → Sym(X). The factor group G/N acts faithfully on X by setting (gN).x = g.x. The original action of G on X is faithful if and only if N = {e}.

Read more about this topic:  Group Action

Famous quotes containing the words types of, types and/or actions:

    ... there are two types of happiness and I have chosen that of the murderers. For I am happy. There was a time when I thought I had reached the limit of distress. Beyond that limit, there is a sterile and magnificent happiness.
    Albert Camus (1913–1960)

    Our children evaluate themselves based on the opinions we have of them. When we use harsh words, biting comments, and a sarcastic tone of voice, we plant the seeds of self-doubt in their developing minds.... Children who receive a steady diet of these types of messages end up feeling powerless, inadequate, and unimportant. They start to believe that they are bad, and that they can never do enough.
    Stephanie Martson (20th century)

    When a Man is in a serious Mood, and ponders upon his own Make, with a Retrospect to the Actions of his Life, and the many fatal Miscarriages in it, which he owes to ungoverned Passions, he is then apt to say to himself, That Experience has guarded him against such Errors for the future: But Nature often recurs in Spite of his best Resolutions, and it is to the very End of our Days a Struggle between our Reason and our Temper, which shall have the Empire over us.
    Richard Steele (1672–1729)