Groundwater Flow Equation - Diffusion Equation (transient Flow)

Diffusion Equation (transient Flow)

Mass can be represented as density times volume, and under most conditions, water can be considered incompressible (density does not depend on pressure). The mass fluxes across the boundaries then become volume fluxes (as are found in Darcy's law). Using Taylor series to represent the in and out flux terms across the boundaries of the control volume, and using the divergence theorem to turn the flux across the boundary into a flux over the entire volume, the final form of the groundwater flow equation (in differential form) is:

This is known in other fields as the diffusion equation or heat equation, it is a parabolic partial differential equation (PDE). This mathematical statement indicates that the change in hydraulic head with time (left hand side) equals the negative divergence of the flux (q) and the source terms (G). This equation has both head and flux as unknowns, but Darcy's law relates flux to hydraulic heads, so substituting it in for the flux (q) leads to

Now if hydraulic conductivity (k) is spatially uniform and isotropic (rather than a tensor), it can be taken out of the spatial derivative, simplifying them to the Laplacian, this makes the equation

Dividing through by the specific storage (Ss), puts hydraulic diffusivity (α = k/Ss or equivalently, α = T/S) on the right hand side. The hydraulic diffusivity is proportional to the speed at which a finite pressure pulse will propagate through the system (large values of α lead to fast propagation of signals). The groundwater flow equation then becomes

Where the sink/source term, G, now has the same units but is divided by the appropriate storage term (as defined by the hydraulic diffusivity substitution).

Read more about this topic:  Groundwater Flow Equation

Famous quotes containing the word equation:

    A nation fights well in proportion to the amount of men and materials it has. And the other equation is that the individual soldier in that army is a more effective soldier the poorer his standard of living has been in the past.
    Norman Mailer (b. 1923)