Maximum-length Expansions and Congruence Conditions
Any fraction x/y requires at most x terms in its greedy expansion. Mays (1987) and Freitag & Phillips (1999) examine the conditions under which x/y leads to an expansion with exactly x terms; these can be described in terms of congruence conditions on y.
- Every fraction 1/y requires one term in its expansion; the simplest such fraction is 1/1.
- Every fraction 2/y for odd y > 1 requires two terms in its expansion; the simplest such fraction is 2/3.
- A fraction 3/y requires three terms in its expansion if and only if y ≡ 1 (mod 6), for then -y mod x = 2 and y(y+2)/3 is odd, so the fraction remaining after a single step of the greedy expansion,
-
- is in simplest terms. The simplest fraction 3/y with a three-term expansion is 3/7.
- A fraction 4/y requires four terms in its expansion if and only if y ≡ 1 or 17 (mod 24), for then the numerator -y mod x of the remaining fraction is 3 and the denominator is 1 (mod 6). The simplest fraction 4/y with a four-term expansion is 4/17. The Erdős–Straus conjecture states that all fractions 4/y have an expansion with three or fewer terms, but when y ≡ 1 or 17 (mod 24) such expansions must be found by methods other than the greedy algorithm.
More generally the sequence of fractions x/y that have x-term expansions and that have the smallest possible denominator y for each x is
- (sequence A048860 in OEIS).
Read more about this topic: Greedy Algorithm For Egyptian Fractions
Famous quotes containing the words congruence and/or conditions:
“As for butterflies, I can hardly conceive
of ones attending upon you; but to question
the congruence of the complement is vain, if it exists.”
—Marianne Moore (18871972)
“The Settlement ... is an experimental effort to aid in the solution of the social and industrial problems which are engendered by the modern conditions of life in a great city. It insists that these problems are not confined to any one portion of the city. It is an attempt to relieve, at the same time, the overaccumulation at one end of society and the destitution at the other ...”
—Jane Addams (18601935)