Grassmann Number - Matrix Representations

Matrix Representations

Grassmann numbers can always be represented by matrices. Consider, for example, the Grassmann algebra generated by two Grassmann numbers and . These Grassmann numbers can be represented by 4×4 matrices:

\theta_1 = \begin{bmatrix}
0 & 0 & 0 & 0\\
1 & 0 & 0 & 0\\
0 & 0 & 0 & 0\\
0 & 0 & 1 & 0\\
\end{bmatrix}\qquad \theta_2 = \begin{bmatrix}
0&0&0&0\\
0&0&0&0\\
1&0&0&0\\
0&-1&0&0\\
\end{bmatrix}\qquad \theta_1\theta_2 = -\theta_2\theta_1 = \begin{bmatrix}
0&0&0&0\\
0&0&0&0\\
0&0&0&0\\
1&0&0&0\\
\end{bmatrix}.

In general, a Grassmann algebra on n generators can be represented by 2n × 2n square matrices. Physically, these matrices can be thought of as raising operators acting on a Hilbert space of n identical fermions in the occupation number basis. Since the occupation number for each fermion is 0 or 1, there are 2n possible basis states. Mathematically, these matrices can be interpreted as the linear operators corresponding to left exterior multiplication on the Grassmann algebra itself.

Read more about this topic:  Grassmann Number

Famous quotes containing the word matrix:

    As all historians know, the past is a great darkness, and filled with echoes. Voices may reach us from it; but what they say to us is imbued with the obscurity of the matrix out of which they come; and try as we may, we cannot always decipher them precisely in the clearer light of our day.
    Margaret Atwood (b. 1939)