Grand Challenges in Global Health - The Grand Challenges

The Grand Challenges

Goal 1: Improve Vaccines

  • Grand Challenge #1: Create Effective Single-Dose Vaccines that Can be used Soon After Birth
Potential benefits of this challenge include increased effectiveness of immunization, decreased cost of immunization systems, and decreased deaths in early childhood. One project to combat this challenge that is currently underway is the development of a live recombinant attenuated salmonella anti pneumococcal vaccine for newborns, which is being investigated by Dr. Roy Curtiss III at Arizona State University.
  • Grand Challenge #2: Prepare Vaccines that Do Not Require Refrigeration
Potential benefits include increased efficacy of immunization systems as well as reduced cost of vaccine delivery. Dr. Abraham L. Sonenschein and his team at Tufts University School of Medicine are currently working to develop childhood vaccines for diphtheria, tetanus, and pertussis that can endure a wide range of temperatures with the encapsulation of heat-resistant bacterial spores.
  • Grand Challenge #3: Develop Needle-Free Delivery Systems for Vaccines
Potential benefits include improved access and compliance and the avoidance of infection from the re-use of needles. Dr. James R. Baker and a team at the University of Michigan are working on a way of preparing vaccines that can be given as nasal drops, eliminating the need for preservatives or refrigeration

Goal 2: Create New Vaccines

  • Grand Challenge #4: Devise Reliable Tests in Model Systems to Evaluate Live-attenuated Vaccines
The priority areas for this challenge are viruses refractory to vaccine development, pathogenic bacteria, and complex pathogens such as protozoa and fungi. Dr. Hongkui Deng of Peking University in China is currently working with his colleagues to create mouse models with immune systems and livers that are similar enough to humans to allow testing of potential HIV and HCV vaccines.
  • Grand Challenge #5: Solve How to Design Antigens for Effective, Protective immunity
The priority areas for this challenge involve HIV and malaria. Dr. Ralph Steinman and his team are currently developing vaccines that stimulate the immune system’s dendritic cells, which are known to help protect against infectious diseases.
  • Grand Challenge #6: Learn Which Immunological Responses Provide Protective immunity
A potential benefit of this challenge is the establishment of new diagnostic and prognostic tools for assessing public health. Dr. Patrick E. Duffy’s team at the Seattle Biomedical Research Institute is currently attempting to identify the antibodies and other immunological responses that help protect children from death due to malaria.

Goal 3: Control Insect Vectors

  • Grand Challenge #7: Develop a Genetic Strategy to Deplete or Incapacitate a Disease-transmitting Insect Population
The priority areas for this challenge include malaria, dengue, and other tropical arboviral diseases. Dr. Scott O’Neill of the University of Queensland in Australia is attempting to modify mosquito population age structure in order to eliminate dengue transmission.
  • Grand Challenge #8: Develop a Chemical Strategy to Deplete or Incapacitate a Disease-transmitting Insect Population
The hope with this challenge is that this challenge will effectively disrupt the diseases transmission cycle. At Virginia Tech University, Dr. Jeffery Bloomquist and a team are using molecular modeling and a new chemical synthesis method known as “click chemistry” to produce insecticides targeted to the primary malaria vector mosquitoes, Anopheles gambiae.

Goal 4: Improve Nutrition

  • Grand Challenge #9: Create a Full Range of Optimal, Bioavailable Nutrients in a Single Staple Plant Species
To improve nutrition, this grand challenge focuses on iron, zinc, and selenium deficiencies. At Ohio State University, Dr. Richard Sayre is leading a team of scientists to create nutritious cassava for sub-Saharan Africa.

Goal 5: Limit Drug Resistance

  • Grand Challenge #10: Discover Drugs and Delivery Systems that Minimize the Likelihood of Drug Resistant Micro-organisms
This challenge focuses on TB, Malaria, and HIV. Potential benefits include reduced treatment failures and simple treatment regimens. Dr. Brett Finlay and a team at the University of British Colombia are investigating new therapeutics that boost innate immunity to treat infectious diseases.

Goal 6: Cure Infection

  • Grand Challenge #11: Create Therapies that Can Cure Latent Infection
This challenge focuses on HIV, HBV, Herpes, TB, Schistosomiasis, and Toxoplasmosis. Dr. Douglas Young of the Imperial College in London is leading researchers from the U.K, U.S., Singapore, Korea, and Mexico to further expose the biology of latency and then develop drugs against latent TB
  • Grand Challenge #12: Create Immunological Methods that Can Cure Latent Infection
This challenge focuses on similar priority areas as Challenge #11, and Dr. Robert Garcea and a group of researchers from the University of Colorado School of Medicine are working to identify the best protein candidate for a therapeutic vaccine that will target HPV infection.

Goal 7: Measure Health Status

  • Grand Challenge #13: Develop Technologies that Permit Quantitative Assessment of Population Health
Potential benefits include a standardized global system for assessing the status of population health as well as accurate assessment of injury, disease prevalence, and incidence. Dr. Christopher Murray and international investigators are working to develop ways to assess and measure mortality.
  • Grand Challenge #14: Develop Technologies that Allow Assessment of Individuals for Multiple Conditions or Pathogens at Point of Care
A potential benefit of this challenge is the rapid detection and diagnoses of disease exposure. At Northwestern University, Dr. David Kelso’s team is trying to develop rapid and affordable point-of-care systems.

Today: The GCGH is launching a new Grand Challenge in Family Health. Currently, two new grant opportunities exist under this challenge:

  • Discover New Ways to Achieve Health Growth
A potential benefit of this challenge might lead to new methods of aiding the development of prevention of intrauterine growth restriction (IUGR), stunting, and wasting of newborns and infants in the developing world.
  • Preventing Preterm Birth
Potential benefits of this initiative could lead to low-cost technologies that reduce the global problem of prematurity

Read more about this topic:  Grand Challenges In Global Health

Famous quotes containing the words grand and/or challenges:

    As a science of the unconscious it is a therapeutic method, in the grand style, a method overarching the individual case. Call this, if you choose, a poet’s utopia.
    Thomas Mann (1875–1955)

    A powerful idea communicates some of its strength to him who challenges it.
    Marcel Proust (1871–1922)