Gradient - Interpretations

Interpretations

Consider a room in which the temperature is given by a scalar field, T, so at each point (x,y,z) the temperature is T(x,y,z). (We will assume that the temperature does not change over time.) At each point in the room, the gradient of T at that point will show the direction the temperature rises most quickly. The magnitude of the gradient will determine how fast the temperature rises in that direction.

Consider a surface whose height above sea level at a point (x, y) is H(x, y). The gradient of H at a point is a vector pointing in the direction of the steepest slope or grade at that point. The steepness of the slope at that point is given by the magnitude of the gradient vector.

The gradient can also be used to measure how a scalar field changes in other directions, rather than just the direction of greatest change, by taking a dot product. Suppose that the steepest slope on a hill is 40%. If a road goes directly up the hill, then the steepest slope on the road will also be 40%. If, instead, the road goes around the hill at an angle, then it will have a shallower slope. For example, if the angle between the road and the uphill direction, projected onto the horizontal plane, is 60°, then the steepest slope along the road will be 20%, which is 40% times the cosine of 60°.

This observation can be mathematically stated as follows. If the hill height function H is differentiable, then the gradient of H dotted with a unit vector gives the slope of the hill in the direction of the vector. More precisely, when H is differentiable, the dot product of the gradient of H with a given unit vector is equal to the directional derivative of H in the direction of that unit vector.

Read more about this topic:  Gradient