Governing Dynamics - Stability

Stability

The concept of stability, useful in the analysis of many kinds of equilibria, can also be applied to Nash equilibria.

A Nash equilibrium for a mixed strategy game is stable if a small change (specifically, an infinitesimal change) in probabilities for one player leads to a situation where two conditions hold:

  1. the player who did not change has no better strategy in the new circumstance
  2. the player who did change is now playing with a strictly worse strategy.

If these cases are both met, then a player with the small change in his mixed-strategy will return immediately to the Nash equilibrium. The equilibrium is said to be stable. If condition one does not hold then the equilibrium is unstable. If only condition one holds then there are likely to be an infinite number of optimal strategies for the player who changed. John Nash showed that the latter situation could not arise in a range of well-defined games.

In the "driving game" example above there are both stable and unstable equilibria. The equilibria involving mixed-strategies with 100% probabilities are stable. If either player changes his probabilities slightly, they will be both at a disadvantage, and his opponent will have no reason to change his strategy in turn. The (50%,50%) equilibrium is unstable. If either player changes his probabilities, then the other player immediately has a better strategy at either (0%, 100%) or (100%, 0%).

Stability is crucial in practical applications of Nash equilibria, since the mixed-strategy of each player is not perfectly known, but has to be inferred from statistical distribution of his actions in the game. In this case unstable equilibria are very unlikely to arise in practice, since any minute change in the proportions of each strategy seen will lead to a change in strategy and the breakdown of the equilibrium.

The Nash equilibrium defines stability only in terms of unilateral deviations. In cooperative games such a concept is not convincing enough. Strong Nash equilibrium allows for deviations by every conceivable coalition. Formally, a Strong Nash equilibrium is a Nash equilibrium in which no coalition, taking the actions of its complements as given, can cooperatively deviate in a way that benefits all of its members. However, the Strong Nash concept is sometimes perceived as too "strong" in that the environment allows for unlimited private communication. In fact, Strong Nash equilibrium has to be Pareto efficient. As a result of these requirements, Strong Nash is too rare to be useful in many branches of game theory. However, in games such as elections with many more players than possible outcomes, it can be more common than a stable equilibrium.

A refined Nash equilibrium known as coalition-proof Nash equilibrium (CPNE) occurs when players cannot do better even if they are allowed to communicate and make "self-enforcing" agreement to deviate. Every correlated strategy supported by iterated strict dominance and on the Pareto frontier is a CPNE. Further, it is possible for a game to have a Nash equilibrium that is resilient against coalitions less than a specified size, k. CPNE is related to the theory of the core.

Finally in the eighties, building with great depth on such ideas Mertens-stable equilibria were introduced as a solution concept. Mertens stable equilibria satisfy both forward induction and backward induction. In a Game theory context stable equilibria now usually refer to Mertens stable equilibria.

Read more about this topic:  Governing Dynamics

Famous quotes containing the word stability:

    The message you give your children when you discipline with love is “I care too much about you to let you misbehave. I care enough about you that I’m willing to spend time and effort to help you learn what is appropriate.” All children need the security and stability of food, shelter, love, and protection, but unless they also receive effective and appropriate discipline, they won’t feel secure.
    Stephanie Marston (20th century)

    Traditions are the “always” in life—the rituals and customs that build common memories for children, offer comfort and stability in good times and bad, and create a sense of family identity.
    Marian Edelman Borden (20th century)

    Every nation ... whose affairs betray a want of wisdom and stability may calculate on every loss which can be sustained from the more systematic policy of its wiser neighbors.
    James Madison (1751–1836)