Representing Rational Numbers As Golden Ratio Base Numbers
Every non-negative rational number can be represented as a recurring base-φ expansion, as can any non-negative element of the field Q = Q + √5Q, the field generated by the rational numbers and √5. Conversely any recurring (or terminating) base-φ expansion is a non-negative element of Q. Some examples (with spaces added for emphasis):
- 1/2 ≈ 0.010 010 010 010 ... φ
- 1/3 ≈ 0.00101000 00101000 00101000... φ
- √5 = 10.1φ
- 2+(1/13)√5 ≈ 10.010 1000100010101000100010000000 1000100010101000100010000000 1000100010101000100010000000 ...φ
The justification that a rational gives a recurring expansion is analogous to the equivalent proof for a base-n numeration system (n=2,3,4,...). Essentially in base-φ long division there are only a finite number of possible remainders, and so once there must be a recurring pattern. For example with 1/2 = 1/10.01φ = 100φ/1001φ long division looks like this (note that base-φ subtraction may be hard to follow at first):
.0 1 0 0 1 ________________________ 1 0 0 1 ) 1 0 0.0 0 0 0 0 0 0 0 1 0 0 1 trade: 10000 = 1100 = 1011 ------- so 10000-1001 = 1011-1001 = 10 1 0 0 0 0 1 0 0 1 ------- etc.The converse is also true, in that a number with a recurring base-φ; representation is an element of the field Q. This follows from the observation that a recurring representation with period k involves a geometric series with ratio φ-k, which will sum to an element of Q.
Read more about this topic: Golden Ratio Base
Famous quotes containing the words representing, rational, numbers, golden, ratio and/or base:
“He who has learned what is commonly considered the whole art of painting, that is, the art of representing any natural object faithfully, has as yet only learned the language by which his thoughts are to be expressed.”
—John Ruskin (18191900)
“We fetch fire and water, run about all day among the shops and markets, and get our clothes and shoes made and mended, and are the victims of these details, and once in a fortnight we arrive perhaps at a rational moment.”
—Ralph Waldo Emerson (18031882)
“The only phenomenon with which writing has always been concomitant is the creation of cities and empires, that is the integration of large numbers of individuals into a political system, and their grading into castes or classes.... It seems to have favored the exploitation of human beings rather than their enlightenment.”
—Claude Lévi-Strauss (b. 1908)
“Here is a golden Rule.... Write legibly. The average temper of the human race would be perceptibly sweetened, if everybody obeyed this Rule!”
—Lewis Carroll [Charles Lutwidge Dodgson] (18321898)
“People are lucky and unlucky not according to what they get absolutely, but according to the ratio between what they get and what they have been led to expect.”
—Samuel Butler (18351902)
“Music is of two kinds: one petty, poor, second-rate, never varying, its base the hundred or so phrasings which all musicians understand, a babbling which is more or less pleasant, the life that most composers live.”
—Honoré De Balzac (17991850)