Golden Ratio Base - Representing Rational Numbers As Golden Ratio Base Numbers

Representing Rational Numbers As Golden Ratio Base Numbers

Every non-negative rational number can be represented as a recurring base-φ expansion, as can any non-negative element of the field Q = Q + √5Q, the field generated by the rational numbers and √5. Conversely any recurring (or terminating) base-φ expansion is a non-negative element of Q. Some examples (with spaces added for emphasis):

  • 1/2 ≈ 0.010 010 010 010 ... φ
  • 1/3 ≈ 0.00101000 00101000 00101000... φ
  • √5 = 10.1φ
  • 2+(1/13)√5 ≈ 10.010 1000100010101000100010000000 1000100010101000100010000000 1000100010101000100010000000 ...φ

The justification that a rational gives a recurring expansion is analogous to the equivalent proof for a base-n numeration system (n=2,3,4,...). Essentially in base-φ long division there are only a finite number of possible remainders, and so once there must be a recurring pattern. For example with 1/2 = 1/10.01φ = 100φ/1001φ long division looks like this (note that base-φ subtraction may be hard to follow at first):

.0 1 0 0 1 ________________________ 1 0 0 1 ) 1 0 0.0 0 0 0 0 0 0 0 1 0 0 1 trade: 10000 = 1100 = 1011 ------- so 10000-1001 = 1011-1001 = 10 1 0 0 0 0 1 0 0 1 ------- etc.

The converse is also true, in that a number with a recurring base-φ; representation is an element of the field Q. This follows from the observation that a recurring representation with period k involves a geometric series with ratio φ-k, which will sum to an element of Q.

Read more about this topic:  Golden Ratio Base

Famous quotes containing the words representing, rational, numbers, golden, ratio and/or base:

    ... today we round out the first century of a professed republic,—with woman figuratively representing freedom—and yet all free, save woman.
    Phoebe W. Couzins (1845–1913)

    ... how can a rational being be ennobled by any thing that is not obtained by its own exertions?
    Mary Wollstonecraft (1759–1797)

    Individually, museums are fine institutions, dedicated to the high values of preservation, education and truth; collectively, their growth in numbers points to the imaginative death of this country.
    Robert Hewison (b. 1943)

    I wandered lonely as a cloud
    That floats on high o’er vales and hills,
    When all at once I saw a crowd,
    A host, of golden daffodils;
    William Wordsworth (1770–1850)

    Official dignity tends to increase in inverse ratio to the importance of the country in which the office is held.
    Aldous Huxley (1894–1963)

    Time, force, and death
    Do to this body what extremes you can,
    But the strong base and building of my love
    Is as the very centre of the earth,
    Drawing all things to it.
    William Shakespeare (1564–1616)