Relationship To Fibonacci Sequence
The mathematics of the golden ratio and of the Fibonacci sequence are intimately interconnected. The Fibonacci sequence is:
- 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, ....
The closed-form expression (known as Binet's formula, even though it was already known by Abraham de Moivre) for the Fibonacci sequence involves the golden ratio:
The golden ratio is the limit of the ratios of successive terms of the Fibonacci sequence (or any Fibonacci-like sequence), as originally shown by Kepler:
Therefore, if a Fibonacci number is divided by its immediate predecessor in the sequence, the quotient approximates φ; e.g., 987/610 ≈ 1.6180327868852. These approximations are alternately lower and higher than φ, and converge on φ as the Fibonacci numbers increase, and:
More generally:
where above, the ratios of consecutive terms of the Fibonacci sequence, is a case when .
Furthermore, the successive powers of φ obey the Fibonacci recurrence:
This identity allows any polynomial in φ to be reduced to a linear expression. For example:
However, this is no special property of φ, because polynomials in any solution x to a quadratic equation can be reduced in an analogous manner, by applying:
for given coefficients a, b such that x satisfies the equation. Even more generally, any rational function (with rational coefficients) of the root of an irreducible nth-degree polynomial over the rationals can be reduced to a polynomial of degree n ‒ 1. Phrased in terms of field theory, if α is a root of an irreducible nth-degree polynomial, then has degree n over, with basis .
Read more about this topic: Golden-ratio, Mathematics
Famous quotes containing the words relationship to, relationship and/or sequence:
“... the Wall became a magnet for citizens of every generation, class, race, and relationship to the war perhaps because it is the only great public monument that allows the anesthetized holes in the heart to fill with a truly national grief.”
—Adrienne Rich (b. 1929)
“Henry David Thoreau, who never earned much of a living or sustained a relationship with any woman that wasnt brotherlywho lived mostly under his parents roof ... who advocated one days work and six days off as the weekly round and was considered a bit of a fool in his hometown ... is probably the American writer who tells us best how to live comfortably with our most constant companion, ourselves.”
—Edward Hoagland (b. 1932)
“Reminiscences, even extensive ones, do not always amount to an autobiography.... For autobiography has to do with time, with sequence and what makes up the continuous flow of life. Here, I am talking of a space, of moments and discontinuities. For even if months and years appear here, it is in the form they have in the moment of recollection. This strange formit may be called fleeting or eternalis in neither case the stuff that life is made of.”
—Walter Benjamin (18921940)