A Goldbach number is an even positive integer that can be expressed as the sum of two primes. Therefore, another statement of Goldbach's conjecture is that all even integers greater than or equal to 4 are Goldbach numbers.
The expression of a given even number as a sum of two primes is called a Goldbach partition of that number. For example:
- 2(2) = 4 = 2 + 2
- 2(3) = 6 = 3 + 3
- 2(4) = 8 = 3 + 5
- 2(5) = 10 = 3 + 7 = 5 + 5
- ...
- 2(50) = 100 = 3 + 97 = 11 + 89 = 17 + 83 = 29 + 71 = 41 + 59 = 47 + 53
- ...
The number of unordered ways in which 2n can be written as the sum of two primes (for n starting at 1) is:
- 0, 1, 1, 1, 2, 1, 2, 2, 2, 2, 3, 3, 3, 2, 3, 2, 4, 4, 2, 3, ... ( A045917).
Read more about this topic: Goldbach's Conjecture
Famous quotes containing the word number:
“In a number of other cultures, fathers are not relegated to babysitter status, nor is their ability to be primary nurturers so readily dismissed.... We have evidence that in our own society men can rear and nurture their children competently and that mens methods, although different from those of women, are imaginative and constructive.”
—Kyle D. Pruett (20th century)