Glossary of Graph Theory - Connectivity

Connectivity

Connectivity extends the concept of adjacency and is essentially a form (and measure) of concatenated adjacency.

If it is possible to establish a path from any vertex to any other vertex of a graph, the graph is said to be connected; otherwise, the graph is disconnected. A graph is totally disconnected if there is no path connecting any pair of vertices. This is just another name to describe an empty graph or independent set.

A cut vertex, or articulation point, is a vertex whose removal disconnects the remaining subgraph. A cut set, or vertex cut or separating set, is a set of vertices whose removal disconnects the remaining subgraph. A bridge is an analogous edge (see below).

If it is always possible to establish a path from any vertex to every other even after removing any k - 1 vertices, then the graph is said to be k-vertex-connected or k-connected. Note that a graph is k-connected if and only if it contains k internally disjoint paths between any two vertices. The example graph above is connected (and therefore 1-connected), but not 2-connected. The vertex connectivity or connectivity κ(G) of a graph G is the minimum number of vertices that need to be removed to disconnect G. The complete graph Kn has connectivity n - 1 for n > 1; and a disconnected graph has connectivity 0.

In network theory, a giant component is a connected subgraph that contains a majority of the entire graph's nodes.

A bridge, or cut edge or isthmus, is an edge whose removal disconnects a graph. (For example, all the edges in a tree are bridges.) A disconnecting set is a set of edges whose removal increases the number of components. An edge cut is the set of all edges which have one vertex in some proper vertex subset S and the other vertex in V(G)\S. Edges of K3 form a disconnecting set but not an edge cut. Any two edges of K3 form a minimal disconnecting set as well as an edge cut. An edge cut is necessarily a disconnecting set; and a minimal disconnecting set of a nonempty graph is necessarily an edge cut. A bond is a minimal (but not necessarily minimum), nonempty set of edges whose removal disconnects a graph. A cut vertex is an analogous vertex (see above).

A graph is k-edge-connected if any subgraph formed by removing any k - 1 edges is still connected. The edge connectivity κ'(G) of a graph G is the minimum number of edges needed to disconnect G. One well-known result is that κ(G) ≤ κ'(G) ≤ δ(G).

A component is a maximally connected subgraph. A block is either a maximally 2-connected subgraph, a bridge (together with its vertices), or an isolated vertex. A biconnected component is a 2-connected component.

An articulation point (also known as a separating vertex) of a graph is a vertex whose removal from the graph increases its number of connected components. A biconnected component can be defined as a subgraph induced by a maximal set of nodes that has no separating vertex.

Read more about this topic:  Glossary Of Graph Theory