Glossary of Graph Theory - Adjacency and Degree

Adjacency and Degree

In graph theory, degree, especially that of a vertex, is usually a measure of immediate adjacency.

An edge connects two vertices; these two vertices are said to be incident to that edge, or, equivalently, that edge incident to those two vertices. All degree-related concepts have to do with adjacency or incidence.

The degree, or valency, dG(v) of a vertex v in a graph G is the number of edges incident to v, with loops being counted twice. A vertex of degree 0 is an isolated vertex. A vertex of degree 1 is a leaf. In the labelled simple graph example, vertices 1 and 3 have a degree of 2, vertices 2, 4 and 5 have a degree of 3, and vertex 6 has a degree of 1. If E is finite, then the total sum of vertex degrees is equal to twice the number of edges.

The total degree of a graph is equal to two times the number of edges, loops included. This means that for a graph with 3 vertices with each vertex having a degree of two (i.e. a triangle) the total degree would be six (e.g. 3 x 2 = 6). The general formula for this is total degree = 2n where n = number of edges.

A degree sequence is a list of degrees of a graph in non-increasing order (e.g. d1d2 ≥ … ≥ dn). A sequence of non-increasing integers is realizable if it is a degree sequence of some graph.

Two vertices u and v are called adjacent if an edge exists between them. We denote this by u ~ v or uv. In the above graph, vertices 1 and 2 are adjacent, but vertices 2 and 4 are not. The set of neighbors of v, that is, vertices adjacent to v not including v itself, forms an induced subgraph called the (open) neighborhood of v and denoted NG(v). When v is also included, it is called a closed neighborhood and denoted by NG. When stated without any qualification, a neighborhood is assumed to be open. The subscript G is usually dropped when there is no danger of confusion; the same neighborhood notation may also be used to refer to sets of adjacent vertices rather than the corresponding induced subgraphs. In the example graph, vertex 1 has two neighbors: vertices 2 and 5. For a simple graph, the number of neighbors that a vertex has coincides with its degree.

A dominating set of a graph is a vertex subset whose closed neighborhood includes all vertices of the graph. A vertex v dominates another vertex u if there is an edge from v to u. A vertex subset V dominates another vertex subset U if every vertex in U is adjacent to some vertex in V. The minimum size of a dominating set is the domination number γ(G).

In computers, a finite, directed or undirected graph (with n vertices, say) is often represented by its adjacency matrix: an n-by-n matrix whose entry in row i and column j gives the number of edges from the i-th to the j-th vertex.

Spectral graph theory studies relationships between the properties of a graph and its adjacency matrix or other matrices associated with the graph.

The maximum degree Δ(G) of a graph G is the largest degree over all vertices; the minimum degree δ(G), the smallest.

A graph in which every vertex has the same degree is regular. It is k-regular if every vertex has degree k. A 0-regular graph is an independent set. A 1-regular graph is a matching. A 2-regular graph is a vertex disjoint union of cycles. A 3-regular graph is said to be cubic, or trivalent.

A k-factor is a k-regular spanning subgraph. A 1-factor is a perfect matching. A partition of edges of a graph into k-factors is called a k-factorization. A k-factorable graph is a graph that admits a k-factorization.

A graph is biregular if it has unequal maximum and minimum degrees and every vertex has one of those two degrees.

A strongly regular graph is a regular graph such that any adjacent vertices have the same number of common neighbors as other adjacent pairs and that any nonadjacent vertices have the same number of common neighbors as other nonadjacent pairs.

Read more about this topic:  Glossary Of Graph Theory

Famous quotes containing the word degree:

    Essential truth, the truth of the intellectualists, the truth with no one thinking it, is like the coat that fits tho no one has ever tried it on, like the music that no ear has listened to. It is less real, not more real, than the verified article; and to attribute a superior degree of glory to it seems little more than a piece of perverse abstraction-worship.
    William James (1842–1910)