Glossary of Field Theory - Definition of A Field

Definition of A Field

A field is a commutative ring (F,+,*) in which 0≠1 and every nonzero element has a multiplicative inverse. In a field we thus can perform the operations addition, subtraction, multiplication, and division.

The non-zero elements of a field F form an abelian group under multiplication; this group is typically denoted by F×;

The ring of polynomials in the variable x with coefficients in F is denoted by F.

Read more about this topic:  Glossary Of Field Theory

Famous quotes containing the words definition of a, definition of, definition and/or field:

    It’s a rare parent who can see his or her child clearly and objectively. At a school board meeting I attended . . . the only definition of a gifted child on which everyone in the audience could agree was “mine.”
    Jane Adams (20th century)

    ... we all know the wag’s definition of a philanthropist: a man whose charity increases directly as the square of the distance.
    George Eliot [Mary Ann (or Marian)

    I’m beginning to think that the proper definition of “Man” is “an animal that writes letters.”
    Lewis Carroll [Charles Lutwidge Dodgson] (1832–1898)

    When it had long since outgrown his purely medical implications and become a world movement which penetrated into every field of science and every domain of the intellect: literature, the history of art, religion and prehistory; mythology, folklore, pedagogy, and what not.
    Thomas Mann (1875–1955)