Glossary of Field Theory - Basic Definitions

Basic Definitions

Characteristic
The characteristic of the field F is the smallest positive integer n such that n·1 = 0; here n·1 stands for n summands 1 + 1 + 1 + ... + 1. If no such n exists, we say the characteristic is zero. Every non-zero characteristic is a prime number. For example, the rational numbers, the real numbers and the p-adic numbers have characteristic 0, while the finite field Zp has characteristic p.
Subfield
A subfield of a field F is a subset of F which is closed under the field operation + and * of F and which, with these operations, forms itself a field.
Prime field
The prime field of the field F is the unique smallest subfield of F.
Extension field
If F is a subfield of E then E is an extension field of F. We then also say that E/F is a field extension.
Degree of an extension
Given an extension E/F, the field E can be considered as a vector space over the field F, and the dimension of this vector space is the degree of the extension, denoted by .
Finite extension
A finite extension is a field extension whose degree is finite.
Algebraic extension
If an element α of an extension field E over F is the root of a non-zero polynomial in F, then α is algebraic over F. If every element of E is algebraic over F, then E/F is an algebraic extension.
Generating set
Given a field extension E/F and a subset S of E, we write F(S) for the smallest subfield of E that contains both F and S. It consists of all the elements of E that can be obtained by repeatedly using the operations +,-,*,/ on the elements of F and S. If E = F(S) we say that E is generated by S over F.
Primitive element
An element α of an extension field E over a field F is called a primitive element if E=F(α), the smallest extension field containing α. Such an extension is called a simple extension.
Splitting field
A field extension generated by the complete factorisation of a polynomial.
Normal extension
A field extension generated by the complete factorisation of a set of polynomials.
Separable extension
An extension generated by roots of separable polynomials.
Perfect field
A field such that every finite extension is separable. All fields of characteristic zero, and all finite fields, are perfect.
Imperfect degree
Let F be a field of characteristic p>0; then Fp is a subfield. The degree is called the imperfect degree of F. The field F is perfect if and only if its imperfect degree is 1. For example, if F is a function field of n variables over a finite field of characteristic p>0, then its imperfect degree is pn.
Algebraically closed field
A field F is algebraically closed if every polynomial in F has a root in F; equivalently: every polynomial in F is a product of linear factors.
Algebraic closure
An algebraic closure of a field F is an algebraic extension of F which is algebraically closed. Every field has an algebraic closure, and it is unique up to an isomorphism that fixes F.
Transcendental
Those elements of an extension field of F that are not algebraic over F are transcendental over F.
Algebraically independent elements
Elements of an extension field of F are algebraically independent over F if they don't satisfy any non-zero polynomial equation with coefficients in F.
Transcendence degree
The number of algebraically independent transcendental elements in a field extension. It is used to define the dimension of an algebraic variety.

Read more about this topic:  Glossary Of Field Theory

Famous quotes containing the words basic and/or definitions:

    The “universal moments” of child rearing are in fact nothing less than a confrontation with the most basic problems of living in society: a facing through one’s children of all the conflicts inherent in human relationships, a clarification of issues that were unresolved in one’s own growing up. The experience of child rearing not only can strengthen one as an individual but also presents the opportunity to shape human relationships of the future.
    Elaine Heffner (20th century)

    Lord Byron is an exceedingly interesting person, and as such is it not to be regretted that he is a slave to the vilest and most vulgar prejudices, and as mad as the winds?
    There have been many definitions of beauty in art. What is it? Beauty is what the untrained eyes consider abominable.
    Edmond De Goncourt (1822–1896)