Global Climate Model - Model Structure

Model Structure

Three-dimensional (more properly four-dimensional) GCMs discretise the equations for fluid motion and integrate these forward in time. They also contain parameterisations for processes – such as convection – that occur on scales too small to be resolved directly. More sophisticated models may include representations of the carbon and other cycles.

A simple general circulation model (SGCM), a minimal GCM, consists of a dynamical core that relates material properties such as temperature to dynamical properties such as pressure and velocity. Examples are programs that solve the primitive equations, given energy input into the model, and energy dissipation in the form of scale-dependent friction, so that atmospheric waves with the highest wavenumbers are the ones most strongly attenuated. Such models may be used to study atmospheric processes within a simplified framework but are not suitable for future climate projections.

Atmospheric GCMs (AGCMs) model the atmosphere (and typically contain a land-surface model as well) and impose sea surface temperatures (SSTs). A large amount of information including model documentation is available from AMIP. They may include atmospheric chemistry.

  • AGCMs consist of a dynamical core which integrates the equations of fluid motion, typically for:
    • surface pressure
    • horizontal components of velocity in layers
    • temperature and water vapor in layers
  • There is generally a radiation code, split into solar/short wave and terrestrial/infra-red/long wave
  • Parametrizations are used to include the effects of various processes. All modern AGCMs include parameterizations for:
    • convection
    • land surface processes, albedo and hydrology
    • cloud cover

A GCM contains a number of prognostic equations that are stepped forward in time (typically winds, temperature, moisture, and surface pressure) together with a number of diagnostic equations that are evaluated from the simultaneous values of the variables. As an example, pressure at any height can be diagnosed by applying the hydrostatic equation to the predicted surface pressure and the predicted values of temperature between the surface and the height of interest. The pressure diagnosed in this way then is used to compute the pressure gradient force in the time-dependent equation for the winds.

Oceanic GCMs (OGCMs) model the ocean (with fluxes from the atmosphere imposed) and may or may not contain a sea ice model. For example, the standard resolution of HadOM3 is 1.25 degrees in latitude and longitude, with 20 vertical levels, leading to approximately 1,500,000 variables.

Coupled atmosphere–ocean GCMs (AOGCMs) (e.g. HadCM3, GFDL CM2.X) combine the two models. They thus have the advantage of removing the need to specify fluxes across the interface of the ocean surface. These models are the basis for sophisticated model predictions of future climate, such as are discussed by the IPCC.

AOGCMs represent the pinnacle of complexity in climate models and internalise as many processes as possible. They are the only tools that could provide detailed regional predictions of future climate change. However, they are still under development. The simpler models are generally susceptible to simple analysis and their results are generally easy to understand. AOGCMs, by contrast, are often nearly as hard to analyse as the real climate system.

Read more about this topic:  Global Climate Model

Famous quotes containing the words model and/or structure:

    ... if we look around us in social life and note down who are the faithful wives, the most patient and careful mothers, the most exemplary housekeepers, the model sisters, the wisest philanthropists, and the women of the most social influence, we will have to admit that most frequently they are women of cultivated minds, without which even warm hearts and good intentions are but partial influences.
    Mrs. H. O. Ward (1824–1899)

    It is difficult even to choose the adjective
    For this blank cold, this sadness without cause.
    The great structure has become a minor house.
    No turban walks across the lessened floors.
    The greenhouse never so badly needed paint.
    Wallace Stevens (1879–1955)