GIS and Hydrology - GIS in Groundwater

GIS in Groundwater

As mentioned earlier, 98% of the available freshwater (negating polar and glacial ice) for human and environmental uses is in groundwater. In the United States, about ¼ of the water used for personal, commercial/industrial, and irrigation uses comes from groundwater. With increasing demands placed on surface water resources, it is likely the demand for groundwater will increase. In some places, this resource has already been severely tapped, and even mismanaged. An example here is the surface water decline in the Republican River watershed of Nebraska and Kansas where over-pumping of groundwater for irrigation in Nebraska has depleted surface water available for downstream flow and use in Kansas resulting in a lawsuit by that state against the state of Nebraska. Although not as apparent as surface water flow, groundwater can also be characterized spatially in a GIS and analyzed by scientists and natural resource managers.

It can be argued that the depiction of groundwater is an even more complex task than that of surface water. The two resources are by no means disjoint, as knowing where surface water recharges groundwater and where groundwater flows supply surface water is an important aspect of the hydrologic cycle. Hydrogeology is especially well suited to GIS. Groundwater moves much more slowly than surface water, on the order of less than a meter per day up to perhaps a hundred meters per day, and is 3-dimensional in flow. In contrast, surface water flows much faster and is more two-dimensional. Groundwater flow is a function of geology and “head,” the total potential energy at a location. Groundwater flows from higher head to lower head at a travel rate and flow path dictated by geology. Head values, geology, groundwater flow direction, even water table height and location of aquifers are among the quantities which may be presented spatially in GIS and used for analysis, management of water availability and water quality, and land use practices.

A very large amount of data from wells is available such as location, depth to water, stratigraphy, water quality and chemistry, aquifer characteristics, and the list goes on. The volume of data can be managed in a GIS and manipulated to display spatial characteristics for analysis and water resource planning. For example, in a simple application of GIS, the effect of a new well can be studied on the existing groundwater and surface water. The results of such a study can be used by decision makers to determine whether or not to proceed with drilling.

An especially useful application of GIS concerns water quality in groundwater. For construction/situating of industrial plants, landfills, agricultural activities, and other potential groundwater contamination sources, it is useful to know how existing groundwater supplies could be affected or would be at risk of impact. Further, in the case of groundwater contamination and the need for subsequent containment and cleanup of the contaminant, an existing framework of the groundwater system would be valuable in planning remediation measures. This GIS could be the front end to a groundwater modeling simulation devised to fully capture the contaminant. An additional example concerning the use of GIS addresses a common problem associated with groundwater pumping and land subsidence or intrusion in coastal areas. Areas that have been overpumped of groundwater can subside, and when near the sea, this may invite flooding. Also, overpumping of groundwater in coastal regions may bring a different problem, such as the case in California where salt-water intrusion has compromised the aquifer. Generally, a salt water interface inland of the coast extends below the land surface dependent on the distance from the coast. Overpumping can bring the salt water interface to a higher position and contaminate an aquifer. A careful study and management of groundwater within GIS or with modeled GIS data can forestall or alleviate these problems.

Read more about this topic:  GIS And Hydrology