Gibbs Phenomenon - The Square Wave Example

The Square Wave Example

We now illustrate the above Gibbs phenomenon in the case of the square wave described earlier. In this case the period L is, the discontinuity is at zero, and the jump a is equal to . For simplicity let us just deal with the case when N is even (the case of odd N is very similar). Then we have

Substituting, we obtain

as claimed above. Next, we compute

S_N f\left(\frac{2\pi}{2N}\right) = \sin\left(\frac{\pi}{N}\right) + \frac{1}{3} \sin\left(\frac{3\pi}{N}\right)
+ \cdots + \frac{1}{N-1} \sin\left( \frac{(N-1)\pi}{N} \right).

If we introduce the normalized sinc function, we can rewrite this as

S_N f\left(\frac{2\pi}{2N}\right) = \frac{\pi}{2} \left[ \frac{2}{N} \operatorname{sinc}\left(\frac{1}{N}\right) + \frac{2}{N} \operatorname{sinc}\left(\frac{3}{N}\right)
+ \cdots + \frac{2}{N} \operatorname{sinc}\left( \frac{(N-1)}{N} \right) \right].

But the expression in square brackets is a numerical integration approximation to the integral (more precisely, it is a midpoint rule approximation with spacing ). Since the sinc function is continuous, this approximation converges to the actual integral as . Thus we have


\begin{align}
\lim_{N \to \infty} S_N f\left(\frac{2\pi}{2N}\right)
& = \frac{\pi}{2} \int_0^1 \operatorname{sinc}(x)\, dx \\
& = \frac{1}{2} \int_{x=0}^1 \frac{\sin(\pi x)}{\pi x}\, d(\pi x) \\
& = \frac{1}{2} \int_0^\pi \frac{\sin(t)}{t}\ dt \quad = \quad \frac{\pi}{4} + \frac{\pi}{2} \cdot (0.089490\dots),
\end{align}

which was what was claimed in the previous section. A similar computation shows

\lim_{N \to \infty} S_N f\left(-\frac{2\pi}{2N}\right) = -\frac{\pi}{2} \int_0^1 \operatorname{sinc}(x)\ dx = -\frac{\pi}{4} -
\frac{\pi}{2} \cdot (0.089490\dots).

Read more about this topic:  Gibbs Phenomenon

Famous quotes containing the words square and/or wave:

    I would say it was the coffin of a midget
    Or a square baby
    Were there not such a din in it.
    Sylvia Plath (1932–1963)

    The city is loveliest when the sweet death racket begins. Her own life lived in defiance of nature, her electricity, her frigidaires, her soundproof walls, the glint of lacquered nails, the plumes that wave across the corrugated sky. Here in the coffin depths grow the everlasting flowers sent by telegraph.
    Henry Miller (1891–1980)