GeSbTe - Applications in Phase-change Memory

Applications in Phase-change Memory

The unique characteristic that makes phase-change memory useful as a memory is the ability to effect a reversible phase change when heated or cooled, switching between stable amorphous and crystalline states. These alloys have high resistance in the amorphous state ‘0’ and are semimetals in the crystalline state ‘1’. In amorphous state, the atoms have short-range atomic order and low free electron density. The alloy also has high resistivity and activation energy. This distinguishes it from the crystalline state having low resistivity and activation energy, long-range atomic order and high free electron density. When used in phase change memory, use of a short, high amplitude electric pulse such that the material reaches melting point and rapidly quenched changes the material from crystalline phase to amorphous phase is widely termed as RESET current and use of a relatively longer, low amplitude electric pulse such that the material reaches only the crystallization point and given time to crystallize allowing phase change from amorphous to crystalline is known as SET current.

The early devices were slow, power consuming and broke down easily due to the large currents. Therefore, it did not succeed as SRAM and flash memory took over. In the 1980s though, the discovery of Germanium-Antimony-Tellurium (GeSbTe) meant that phase change memory now needed less time and power to function. This resulted in the success of the rewriteable optical disk and created renewed interest in the phase change memory. The advances in lithography also meant that previously excessive programming current has now become much smaller as the volume of GeSbTe that changes phase is reduced.

Phase-change memory has many near ideal memory qualities such as non-volatility, fast switching speed, high endurance of more than 1013 read –write cycles, non-destructive read, direct overwriting and long data retention time of more than 10 years. The one advantage that distinguishes it from other next generation non-volatile memory like magnetic random access memory (MRAM) is the unique scaling advantage of having better performance with smaller sizes. The limit to which phase-change memory can be scaled is hence limited by lithography at least until 45 nm. Thus, it offers the biggest potential of achieving ultra-high memory density cells that can be commercialized.

Though phase-change memory offers much promise, there are still certain technical problems that need to be solved before it can reach ultra-high density and commercialized. The most important challenge for phase-change memory is to reduce the programming current to the level that is compatible with the minimum MOS transistor drive current for high-density integration. Currently, the programming current in phase-change memory is substantially high. This high current limits the memory density of the phase-change memory cells as the current supplied by the transistor is not sufficient due to their high current requirement. Hence, the unique scaling advantage of phase-change memory cannot be fully utilized.

The typical phase-change memory device design is shown. It has layers including the top electrode, GST, the GeSbTe layer, BEC, the bottom electrode and the dielectric layers. The programmable volume is the GeSbTe volume that is in contact with the bottom electrode. This is the part that can be scaled down with lithography. The thermal time constant of the device is also important. The thermal time constant must be fast enough for GeSbTe to cool rapidly into the amorphous state during RESET but slow enough to allow crystallization to occur during SET state. The thermal time constant depends on the design and material the cell is built. To read, a low current pulse is applied to the device. A small current ensures the material does not heat up. Information stored is read out by measuring the resistance of the device.

Read more about this topic:  GeSbTe

Famous quotes containing the word memory:

    Tsars and slaves, the intelligent and the obtuse, publicans and pharisees all have an identical legal and moral right to honor the memory of the deceased as they see fit, without regard for anyone else’s opinion and without the fear of hindering one another.
    Anton Pavlovich Chekhov (1860–1904)