Gerard K. O'Neill - High-energy Physics Research

High-energy Physics Research

After graduating from Cornell, O'Neill accepted a position as an instructor at Princeton University. There he started his research into high-energy particle physics. In 1956, his second year of teaching, he published a two-page article that theorized that the particles produced by a particle accelerator could be stored for a few seconds in a storage ring. The stored particles could then be directed to collide with another particle beam. This would increase the energy of the particle collision over the previous method, which directed the beam at a fixed target. His ideas were not immediately accepted by the physics community.

O'Neill became an assistant professor at Princeton in 1956, and was promoted to associate professor in 1959. He visited Stanford University in 1957 to meet with Professor Wolfgang K. H. Panofsky. This resulted in a collaboration between Princeton and Stanford to build the Colliding Beam Experiment (CBX). With a US$800,000 grant from the Office of Naval Research, construction on the first particle storage rings began in 1958 at the Stanford High-Energy Physics Laboratory. He figured out how to capture the particles and, by pumping the air out to produce a vacuum, store them long enough to experiment on them. CBX stored its first beam on March 28, 1962. O'Neill became a full professor of physics in 1965.

In collaboration with Burton Richter, O'Neill performed the first colliding beam physics experiment in 1965. In this experiment, particle beams from the Stanford Linear Accelerator were collected in his storage rings and then directed to collide at an energy of 600 MeV. At the time, this was the highest energy involved in a particle collision. The results proved that the charge of an electron is contained in a volume less than 100 attometers across. O'Neill considered his device to be capable of only seconds of storage, but, by creating an even stronger vacuum, others were able to increase this to hours. In 1979, he, with physicist David C. Cheng, wrote the graduate-level textbook Elementary Particle Physics: An Introduction. He retired from teaching in 1985, but remained associated with Princeton as professor emeritus until his death.

Read more about this topic:  Gerard K. O'Neill

Famous quotes containing the words physics and/or research:

    The pace of science forces the pace of technique. Theoretical physics forces atomic energy on us; the successful production of the fission bomb forces upon us the manufacture of the hydrogen bomb. We do not choose our problems, we do not choose our products; we are pushed, we are forced—by what? By a system which has no purpose and goal transcending it, and which makes man its appendix.
    Erich Fromm (1900–1980)

    The working woman may be quick to see any problems with children as her fault because she isn’t as available to them. However, the fact that she is employed is rarely central to the conflict. And overall, studies show, being employed doesn’t have negative effects on children; carefully done research consistently makes this clear.
    Grace Baruch (20th century)