Geothermal Gradient - Heat Flow

Heat Flow

Heat flows constantly from its sources within the Earth to the surface. Total heat loss from the Earth is estimated at 44.2 TW (4.42 × 1013 watts). Mean heat flow is 65 mW/m2 over continental crust and 101 mW/m2 over oceanic crust. This is 0.087 watt/square meter on average (0.3 percent of solar power absorbed by the Earth ), but is much more concentrated in areas where thermal energy is transported toward the crust by convection such as along mid-ocean ridges and mantle plumes. The Earth's crust effectively acts as a thick insulating blanket which must be pierced by fluid conduits (of magma, water or other) in order to release the heat underneath. More of the heat in the Earth is lost through plate tectonics, by mantle upwelling associated with mid-ocean ridges. The final major mode of heat loss is by conduction through the lithosphere, the majority of which occurs in the oceans due to the crust there being much thinner and younger than under the continents.

The heat of the Earth is replenished by radioactive decay at a rate of 30 TW. The global geothermal flow rates are more than twice the rate of human energy consumption from all primary sources.

Read more about this topic:  Geothermal Gradient

Famous quotes containing the words heat and/or flow:

    For my part, when I enter most intimately into what I call myself, I always stumble on some particular perception or other, of heat or cold, light or shade, love or hatred, pain or pleasure. I never can catch myself at any time without a perception, and never can observe anything but the perception.
    David Hume (1711–1776)

    I candidly confess that I have ever looked on Cuba as the most interesting addition which could ever be made to our system of States. The control which, with Florida, this island would give us over the Gulf of Mexico, and the countries and isthmus bordering on it, as well as all those whose waters flow into it, would fill up the measure of our political well-being.
    Thomas Jefferson (1743–1826)