Geotech - History

History

Humans have historically used soil as a material for flood control, irrigation purposes, burial sites, building foundations, and as construction material for buildings. First activities were linked to irrigation and flood control, as demonstrated by traces of dykes, dams, and canals dating back to at least 2000 BCE that were found in ancient Egypt, ancient Mesopotamia and the Fertile Crescent, as well as around the early settlements of Mohenjo Daro and Harappa in the Indus valley. As the cities expanded, structures were erected supported by formalized foundations; Ancient Greeks notably constructed pad footings and strip-and-raft foundations. Until the 18th century, however, no theoretical basis for soil design had been developed and the discipline was more of an art than a science, relying on past experience.

Several foundation-related engineering problems, such as the Leaning Tower of Pisa, prompted scientists to begin taking a more scientific-based approach to examining the subsurface. The earliest advances occurred in the development of earth pressure theories for the construction of retaining walls. Henri Gautier, a French Royal Engineer, recognized the "natural slope" of different soils in 1717, an idea later known as the soil's angle of repose. A rudimentary soil classification system was also developed based on a material's unit weight, which is no longer considered a good indication of soil type.

The application of the principles of mechanics to soils was documented as early as 1773 when Charles Coulomb (a physicist, engineer, and army Captain) developed improved methods to determine the earth pressures against military ramparts. Coulomb observed that, at failure, a distinct slip plane would form behind a sliding retaining wall and he suggested that the maximum shear stress on the slip plane, for design purposes, was the sum of the soil cohesion, and friction, where is the normal stress on the slip plane and is the friction angle of the soil. By combining Coulomb's theory with Christian Otto Mohr's 2D stress state, the theory became known as Mohr-Coulomb theory. Although it is now recognized that precise determination of cohesion is impossible because is not a fundamental soil property, the Mohr-Coulomb theory is still used in practice today.

In the 19th century Henry Darcy developed what is now known as Darcy's Law describing the flow of fluids in porous media. Joseph Boussinesq (a mathematician and physicist) developed theories of stress distribution in elastic solids that proved useful for estimating stresses at depth in the ground; William Rankine, an engineer and physicist, developed an alternative to Coulomb's earth pressure theory. Albert Atterberg developed the clay consistency indices that are still used today for soil classification. Osborne Reynolds recognized in 1885 that shearing causes volumetric dilation of dense and contraction of loose granular materials.

Modern geotechnical engineering is said to have begun in 1925 with the publication of Erdbaumechanik by Karl Terzaghi (a civil engineer and geologist). Considered by many to be the father of modern soil mechanics and geotechnical engineering, Terzaghi developed the principle of effective stress, and demonstrated that the shear strength of soil is controlled by effective stress. Terzaghi also developed the framework for theories of bearing capacity of foundations, and the theory for prediction of the rate of settlement of clay layers due to consolidation. In his 1948 book, Donald Taylor recognized that interlocking and dilation of densely packed particles contributed to the peak strength of a soil. The interrelationships between volume change behavior (dilation, contraction, and consolidation) and shearing behavior were all connected via the theory of plasticity using critical state soil mechanics by Roscoe, Schofield, and Wroth with the publication of "On the Yielding of Soils" in 1958. Critical state soil mechanics is the basis for many contemporary advanced constitutive models describing the behavior of soil.

Geotechnical centrifuge modeling is a method of testing physical scale models of geotechnical problems. The use of a centrifuge enhances the similarity of the scale model tests involving soil because the strength and stiffness of soil is very sensitive to the confining pressure. The centrifugal acceleration allows a researcher to obtain large (prototype-scale) stresses in small physical models.

Read more about this topic:  Geotech

Famous quotes containing the word history:

    False history gets made all day, any day,
    the truth of the new is never on the news
    False history gets written every day
    ...
    the lesbian archaeologist watches herself
    sifting her own life out from the shards she’s piecing,
    asking the clay all questions but her own.
    Adrienne Rich (b. 1929)

    Every member of the family of the future will be a producer of some kind and in some degree. The only one who will have the right of exemption will be the mother ...
    Ruth C. D. Havens, U.S. suffragist. As quoted in History of Woman Suffrage, vol. 4, ch. 13, by Susan B. Anthony and Ida Husted Harper (1902)

    ... all big changes in human history have been arrived at slowly and through many compromises.
    Eleanor Roosevelt (1884–1962)