Geostrophic Current

A geostrophic current is an oceanic flow in which the pressure gradient force is balanced by the Coriolis effect. The direction of geostrophic flow is parallel to the isobars, with the high pressure to the right of the flow in the Northern Hemisphere, and the high pressure to the left in the Southern Hemisphere. This concept is familiar from weather maps, whose isobars show the direction of geostrophic flow in the atmosphere. Geostrophic flow may be either barotropic or baroclinic. A geostrophic current may also be thought of as a rotating shallow water wave with a frequency of zero. The principle of geostrophy is useful to oceanographers because it allows them to infer ocean currents from measurements of the sea surface height (by satellite altimeters) or from vertical profiles of seawater density taken by ships or autonomous buoys. The major currents of the world's oceans, such as the Gulf Stream, the Kuroshio Current, the Agulhas Current, and the Antarctic Circumpolar Current, are all approximately in geostrophic balance and are examples of geostrophic currents.

Read more about Geostrophic Current:  Simple Explanation, Geostrophic Equations

Famous quotes containing the word current:

    Liberty, as it is conceived by current opinion, has nothing inherent about it; it is a sort of gift or trust bestowed on the individual by the state pending good behavior.
    Mary McCarthy (1912–1989)